• Title/Summary/Keyword: imperfect channel information

Search Result 93, Processing Time 0.018 seconds

Probabilistic Constrained Approach for Distributed Robust Beamforming Design in Cognitive Two-way Relay Networks

  • Chen, Xueyan;Guo, Li;Dong, Chao;Lin, Jiaru;Li, Xingwang;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2018
  • In this paper, we propose the distributed robust beamforming design scheme in cognitive two-way amplify-and-forward (AF) relay networks with imperfect channel state information (CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this paper is to design the robust beamformer which minimizes the total transmit power of the collaborative relays. This design will guarantee the outage probability of signal-to-interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and satisfies the outage probability of interference generated on the primary user (PU) above the predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties in the two-way transmission, the probabilistic constrained optimization problem is intractable and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to the standard form through a series of matrix transformations. We then accomplish the problem by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the worst-case approach based on S-Procedure. The simulation results indicate that the robust beamforming designs based on the probabilistic method and the worst-case method are both robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility rate and consumes less power.

A Physical-layer Security Scheme Based on Cross-layer Cooperation in Dense Heterogeneous Networks

  • Zhang, Bo;Huang, Kai-zhi;Chen, Ya-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2595-2618
    • /
    • 2018
  • In this paper, we investigate secure communication with the presence of multiple eavesdroppers (Eves) in a two-tier downlink dense heterogeneous network, wherein there is a macrocell base station (MBS) and multiple femtocell base stations (FBSs). Each base station (BS) has multiple users. And Eves attempt to wiretap a macrocell user (MU). To keep Eves ignorant of the confidential message, we propose a physical-layer security scheme based on cross-layer cooperation to exploit interference in the considered network. Under the constraints on the quality of service (QoS) of other legitimate users and transmit power, the secrecy rate of system can be maximized through jointly optimizing the beamforming vectors of MBS and cooperative FBSs. We explore the problem of maximizing secrecy rate in both non-colluding and colluding Eves scenarios, respectively. Firstly, in non-colluding Eves scenario, we approximate the original non-convex problem into a few semi-definite programs (SDPs) by employing the semi-definite relaxation (SDR) technique and conservative convex approximation under perfect channel state information (CSI) case. Furthermore, we extend the frame to imperfect CSI case and use the Lagrangian dual theory to cope with uncertain constraints on CSI. Secondly, in colluding Eves scenario, we transform the original problem into a two-tier optimization problem equivalently. Among them, the outer layer problem is a single variable optimization problem and can be solved by one-dimensional linear search. While the inner-layer optimization problem is transformed into a convex SDP problem with SDR technique and Charnes-Cooper transformation. In the perfect CSI case of both non-colluding and colluding Eves scenarios, we prove that the relaxation of SDR is tight and analyze the complexity of proposed algorithms. Finally, simulation results validate the effectiveness and robustness of proposed scheme.

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.