• Title/Summary/Keyword: impedance functions

Search Result 128, Processing Time 0.026 seconds

Modeling and Analysis of the Fractional Order Buck Converter in DCM Operation by using Fractional Calculus and the Circuit-Averaging Technique

  • Wang, Faqiang;Ma, Xikui
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1008-1015
    • /
    • 2013
  • By using fractional calculus and the circuit-averaging technique, the modeling and analysis of a Buck converter with fractional order inductor and fractional order capacitor in discontinuous conduction mode (DCM) operations is investigated in this study. The equivalent averaged circuit model of the fractional order Buck converter in DCM operations is established. DC analysis is conducted by using the derived DC equivalent circuit model. The transfer functions from the input voltage to the output voltage, the duty cycle to the output voltage, the input impedance, and the output impedance of the fractional order Buck converter in DCM operations are derived from the corresponding AC-equivalent circuit model. Results show that the DC equilibrium point, voltage ratio, and all derived transfer functions of the fractional order Buck converter in DCM operations are affected by the inductor order and/or capacitor order. The fractional order inductor and fractional order capacitor are designed, and PSIM simulations are performed to confirm the correctness of the derivations and theoretical analysis.

High Frequency Grounding Impedances of Vertically-Driven Ground Rods

  • Kim, Tae-Ki;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.41-48
    • /
    • 2009
  • Grounding impedance depends on the frequency of current flowing into a grounding system lightning in particular has a broad frequency spectrum from some tens of Hz to a few MHz. So the grounding impedance related to transient currents such as lightning should be measured. In this paper, the grounding impedances of vertically-driven ground rods of 10, 30 and 48[m] long are measured and analyzed as functions of the frequency of injected current and the feeding point. As a result, the longer the ground rod is, the lower the steady-state ground resistance is. However the grounding impedance of a vertically-driven ground rod at a high frequency is significantly increased. It is not always true that low grounding impedance follows from a low steady-state ground resistance. It is important to evaluate the high frequency performance of grounding systems for protection against lightning.

Defects and Grain Boundary Properties of Cr-doped ZnO (Cr을 첨가한 ZnO의 결함과 입계 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.949-955
    • /
    • 2009
  • In this study, we investigated the effects of Cr dopant (1.0 at% $Cr_2O_3$ sintered at $1000^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and interface state levels of ZnO using dielectric functions ($Z^*$, $M^*$, $Y^*$, $\varepsilon^*$, and $tan{\delta}$), admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). For the identification of the bulk trap levels, we examine the zero-biased admittance spectroscopy and dielectric functions as a function of frequency and temperature. Impedance and electric modulus spectroscopy is a powerful technique to characterize grain boundaries of electronic ceramic materials as well. As a result, three kinds of bulk defect trap levels were found below the conduction band edge of ZnO in 1.0 at% Cr-doped ZnO (Cr-ZnO) as 0.11 eV, 0.21 eV, and 0.31 eV. The overlapped defect levels ($Zn^{..}_i$ and $V^{\cdot}_0$) in admittance spectra were successfully separated by the combination of dielectric function such as $M^*$, $\varepsilon^*$, and $tan{\delta}$. In Cr-ZnO, the interfacial state level was about 1.17 eV by IS and MS. Also we measured the resistance ($R_{gb}$) and capacitance ($C_{gb}$) of grain boundaries with temperature using impedance-modulus spectroscopy. It have discussed about the stability and homogeneity of grain boundaries using distribution parameter ($\alpha$) simulated with the Z"-logf plots with temperature.

Effects of Electrode and Matrix in the PAFC Performance (전극 및 메트릭스가 인산형 연료전지의 성능에 미치는 영향)

  • Kim, Dong-Jin;Song, Rak-Hyun;Lee, Byung-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1873-1875
    • /
    • 1999
  • The effects of electrode and matrix in the PAFC were investigated using AC-impedance spectroscopy. The performance of PAFC was determined by changing external electronic load. AC impedance measurement was carried out as functions of phosphoric acid impregnation temperature. operating temperature and matrix coating method using various cathodes ; 20%Pt/C, 20%Pt-Ni/C, 20%Pt-Co-Ni/C, 10%Pt-Fe-Co/C, and 20%Pt-Fe-Co/C From the analysis of measured impedance data, the interfacial resistance decreased with increasing operating temperature. and with decreasing impregnation temperature. As compared with the alloy catalysts, Pt catalyst showed a lower interfacial resistance. This consist with the cell performance.

  • PDF

Measurement of Soil Moisture Content Using RF Impedance in the Range of 1 to 30MHz (고주파 임피던스를 이용한 토양수분함량 측정에 관한 연구)

  • Kim, Ki-Bok;Lee, Nam-Ho;Noh, Sang-Ha
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.79-88
    • /
    • 1998
  • This study was conducted to measure the moisture content of soil using RF impedance in the range of 1 to 30MHz. Considering the water potential flow in the soils, two types of sensor such as parallel cylinder and perpendicular plate type were fabricated and tested. The capacitance and resistance of sonsors for soil samples having moisture content range of 2 to 27% were measured by Q-meter (HP4342). The higher soil moisture content was and the larger soil bulk density was, the more the capacitance of sensors increased. To eliminate the effect of bulk density on measuring soil moisture content using RF impedance, two kinds of model having the density independent functions such as the ratio of capacitance change to conductance change and weight of water and dry soils respectively were developed and estimated by regression analysis.

  • PDF

Frequency-dependent electrical parameters of soils as a function of the moisture content (수분함유량에 따른 토양의 전기적 파라미터의 주파수의존성)

  • Lee, Bok-Hee;Kim, Ki-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • The electrical parameters of soils are highly dependent on the various factors such as types of soil, chemical compositions, moisture content, temperature, frequency, and so on. The analysis of soil parameters is of fundamental importance in design of grounding systems. In this paper, we present the experimental results of frequency-dependent impedance, resistivity, permittivity of soils as functions of types of soil and moisture content. The impedance and resistivity of soils are decreased as the moisture content and the frequency increase. In particular, the variation of the soil resistivity with the frequency is pronounced in the conditions of high resistivity and low moisture content. On the contrary, the permittivity of soils are sharply decreased with increasing the frequency below 10kHz and the frequency-dependent permittivity of soils are highly changed in the conditions of high moisture and low resistivity.

Multi-band Micropole Antenna Design Using Impedance Change (임피던스 변화를 이용한 다중대역 마이크로폴 안테나 설계)

  • Park, Jaehong;Kim, Hyunhee;Lee, Kyungchang;Hwang, Yeongyeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2021
  • A multi-band, compact, and complex vehicle roof antenna has become important in terms of car exterior design and multi-functions which include Radio, DAB/DMB, SXM, GNSS, Telematics, and V2X. In this paper, we propose a compact multi-band V2X pole-type roof antenna. Using impedance change characteristic, a single pole antenna which has multiband such as radio, DAB/DMB, telematics, and V2X band is proposed. With two patch antennas for GNSS and SXM, the dimension of a multiband roof antenna is 131x63x37mm only.

Vibration of elastic and viscoelastic multilayered spaces

  • Karasudhi, P.;Liu, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-118
    • /
    • 1993
  • The near field is discretized into finite elements, and the far field into infinite elements. Closed form far-field solutions to three fundamental problems are used as the shape functions of the infinite elements. Such infinite elements are capable of transmitting all surface and body waves. An efficient scheme to integrate numerically the stiffness and mass matrices of these elements in presented. Results agree closely with those obtained by others.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Assessment of Input Impedance of an Axial Slot Antenna on a Sectoral Cylindrical Cavity Excited by Probe using Method of Moments

  • Wongsan, Rangsan;Phongcharoenpanich, Chuwong;Krairiksh, Monai
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper presents the assessment of input impedance of a sectoral cylindrical cavity-backed slot antenna excited by a probe. This antenna is proposed to be an element of array that can be assembled to be the antenna for UHF TV broadcasting system. The integral equations are derived based on boundary conditions of the proposed structure and are expressed in terms of dyadic Green's functions and unknown currents. The unknown current densities are solved by the Method of Moments and the input impedance is derived subsequently. Numerical results show the variation of input impedance, for the specified dimensions of the antenna, as a function of frequency. This result is validated by measurement and found that the result is sufficiently accurate. The result from this study is useful for the design of a sectoral cylindrical cavity-backed slot antenna excited by a probe.

  • PDF