• Title/Summary/Keyword: impedance force control

Search Result 101, Processing Time 0.024 seconds

Implementation and Control of Crack Tracking Robot Using Force Control : Part Ⅱ. Force Control (힘제어 기반의 틈새 추종 로봇의 제작 및 제어에 관한 연구 : Part Ⅱ. 힘제어)

  • Jeon Poong Woo;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.337-343
    • /
    • 2005
  • In this paper, experimental studies of force control of the crack tracking robot are presented. The crack tracking robot should maintain constant contact with the road to perform cleaning process of the crack effectively. Regulating desired force on the road requires a sophisticated force control algorithm. Here, two main force control algorithms such as the impedance force control and the explicit force control are used. Performances of two force control algorithms are compared.

Reproduction of Arm Kinesthetic Sense in Virtual Environment Using Bilateral Control (양방향 제어를 이용한 가상환경에서의 팔운동감 제시)

  • 정웅철;민두기;송재복;김용일
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.97-100
    • /
    • 1999
  • Human feels kinesthetic sense in response to the force acted on him. In order to represent kinesthetic sense, a force is analyzed as mechanical impedance (i.e., stiffness or damping) and implemented by active impedance control. In this research, a 3-dimensional arm motion generator is developed to present various mechanical impedance characteristics to an operator. An introduction of virtual reality provides not only a visual effect in virtual environment but also the change in force synchronized with the visual effect in real time.

  • PDF

Force tracking impedance control of robot by learning of robot-environment dynamics (로봇-작업환경 동역학의 학습에 의한 로봇의 힘 추종 임피이던스 제어)

  • 신상운;최규종;김영원;안두성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.548-551
    • /
    • 1997
  • Performance of force tracking impedance control of robot manipulators is degraded by the uncertainties in the robot and environment dynamic model. The purpose of this paper is to improve the controller robustness by applying neural network. Neural networks are designed to learn the uncertainties in robot and environment model for compensating the uncertainties. The proposed scheme is verified through the simulation of 20DOF robot manipulator.

  • PDF

Stable Haptic Display Based on Coupling Impedance for Internal and External Forces

  • Kawai, Masayuki;Yoshikawa, Tsuneo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.2-8
    • /
    • 2002
  • This paper discusses haptic display for grasping a virtual object by two fingers. Much research has been done on fundamental analysis for stability of haptic display. But it is difficult to apply the results immediately to grasping situations by two fingers, since the studies usually deal with a single device and a single object and the fingertip force in grasping situations has two components, internal and external components. The conventional methods, which specify the coupling impedance at each contact point separately, have no other alternative but to specify the impedance for the sum of the internal and external components. So even if only the impedance for the external force should be changed, the impedance for the internal force is also changed at the same time. In this paper, a new method, in which the coupling impedance is specified separately for the internal and external forces, is proposed and the stability of the proposed method is discussed using passivity analysis for 1 -DOF(Degree-Of-Freedom) system. Finally, some experiments are performed to study the effects of the proposed method.

Experimental Studies of Force Control for Crack Sealing Robot

  • Jeon, Poong-Woo;Cho, Hyun-Taek;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1077-1081
    • /
    • 2003
  • In this paper, experimental studies of force tracking control for the crack sealing robot are presented. Crack sealing robot is built to detect, track and seal the crack on the pavement. Before sealing, crack must be detected by a laser sensor and a camera sensor, then cleaned for a better sealing job. In order to maintain contact with the ground force control is required to brush all dirt in the crack out for preparing sealing cracks with tars. Impedance control algorithm is presented to regulate a specified desired force. Experimental studies of the proposed force control algorithm are conducted under unknown environment stiffness and location. Performances of force control algorithm are stable and excellent.

  • PDF

Force tracking position-based impedance control of robot manipulator with unknown environment stiffness

  • Jung, Seul;Hsia, T.C.;Ahn, D.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.8-11
    • /
    • 1996
  • In impedance control for contact force tracking it is well known that the reference trajectory of the robot is calculated from known environment stiffness. The accuracy of estimating the environment stiffness determines the performance of the resulting force tracking. Here we present a simple technique, called the trajectory modification technique(TMT), of determining the reference trajectory under the condition that the environment stiffness is unknown. Computer simulation studies have shown that force tracking using the proposed technique is excellent for unknown environment with time varying stiffness.

  • PDF

Neural Network Compensation for Impedance Force Controlled Robot Manipulators

  • Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • This paper presents the formulation of an impedance controller for regulating the contact force with the environment. To achieve an accurate force tracking control, uncertainties in both robot dynamics and the environment require to be addressed. As part of the framework of the proposed force tracking formulation, a neural network is introduced at the desired trajectory to compensate for all uncertainties in an on-line manner. Compensation at the input trajectory leads to a remarkable structural advantage in that no modifications of the internal force controllers are required. Minimizing the objective function of the training signal for a neural network satisfies the desired force tracking performance. A neural network actually compensates for uncertainties at the input trajectory level in an on-line fashion. Simulation results confirm the position and force tracking abilities of a robot manipulator.

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

Force Limited Vibration Tests of Micro-Satellites (힘제한 방법을 이용한 소형 위성의 진동시험)

  • 김영기;김홍배;김경운;우성현;김성훈;문상무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.446-451
    • /
    • 2004
  • Over testing problems of satellites and theirs components have been issued due to their effects on satellite development cost and schedule. Force limited vibration tests were introduced as solution of the problems in 1980s. Over testing phenomena occurs due to the lack of similarity on interface impedance. Force limited vibration tests control interface force to simulate actual interface impedance. In this research, force limited vibration tests are applied on two satellites environmental tests. Force limits are calculated by using TDFS method and Semi-Empirical method. Four force sensors are employed to control interface force. The tests prove that force limited control reduced maximum interface acceleration in order of 3.

  • PDF

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.