• Title/Summary/Keyword: impact-load

Search Result 1,583, Processing Time 0.029 seconds

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.

Fluid-Structure Interaction Analysis on the Deformation of Simplified Yacht Sails (단순형태 세일의 변형에 대한 유체-구조 연성 해석)

  • Bak, Sera;Yoo, Jaehoon;Song, Chang Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Since most of yacht sails are made of thin fabric, they form cambered sail shape that can efficiently generate lift power by aerodynamic interaction and by external force delivered from supporting structures such as mast and boom. When the incident flow and external force alter in terms of volume or condition, the shape of sail also change. This deformation in shape has impact on the peripheral flow and aerodynamic interaction of the sail, and thus it is related to the deformation of the sail in shape again. Therefore, the precise optimization of aerodynamic performance of sail requires fluid-structure interaction (FSI) analysis. In this study, the simplified sail without camber was under experiment for one-way FSI that uses the result of flow analysis to the structural analysis as load condition in an attempt to fluid-structure interaction phenomenon. To confirm the validity of the analytical methods and the reliability of numerical computation, the difference in deformation by the number of finite element was compared. This study reproduced the boundary conditions that sail could have by rigs such as mast and boom and looked into the deformation of sail. Sail has non-linear deformation such as wrinkles because it is made of a thin fabric material. Thus non-linear structural analysis was conducted and the results were compared with those of analysis on elastic material.

Energy Performance Evaluation of a Double-skin Facade with a Venetian Blind in Residential Buildings (주거건물용 이중외피 시스템의 블라인드 조절에 따른 에너지 성능평가에 관한 연구)

  • Lee, So-Yeun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Apartment balcony has been remodeled since the government permitted remodeling in January 2006.But extended balcony has great impact on building heat gain and loss. Therefore It has problems such as increase of heating and cooling energy. So $\underline{t}echnical$ solutions about window solar gain in summer is an urgent matter. The Purpose of this study is to evaluate energy performance of a blind in a double-skin facade in residential buildings by using EnergyPlus program. The results show that slat angles of $90^{\circ}$ is best in energy performance if we do not consider daylight. Poorly daylighted living room needs electric light and it also causes high cooling load. On the other hand, the results show that the application of blinds controlled automatically is best for energy performance when we consider daylight. Blind slat angles of $50\sim60^{\circ}$ have best performance when blinds are controlled in this angle throughout the day on a clear day in August. Blind slat angles of $0\sim30^{\circ}$ have best performance when blinds $\underline{are\;controlled}$ in this angle throughout the day on a cloudy day (more than 7 of total sky cover) in August.

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF

A Study on Characteristics of Power Generation System Using Biogas from the Waste of Pig Farm

  • Huynh, Thanh-Cong;Pham, Xuan-Mai;Nguyen, Dinh-Hung;Tran, Minh-Tien
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.435-441
    • /
    • 2010
  • To verify the possibility of a power generation system using biogas from the waste of pig farm for rural electric production, a SI gasoline engine is modified to use biogas fuel and was installed in a 20 KVA power generation system. An electronic speed regulation unit is developed to keep the system speed at 1500 rpm. Experimental investigations have been carried out to examine the performance characteristics of power generation system (such as: system frequency, phase output voltage,$\ldots$). In addition, the operating parameters and output emissions ($NO_x$, HC, and $CO_2$) of biogas-fueled engine are preliminary evaluated and analyzed for the change of system load. Results indicated that the researched power generation system shows a high stability of output voltage and frequency with help of speed regulator. Biogas fuel (mainly $CH_4$ and $CO_2$) has an environmental impact and potential as a green alternative fuel for SI engine and they would not require significant modification of existing engine hardware. Output emissions of biogas-fueled engine are found to be relative low. $NO_x$ emission increases with the increase of output electric power of the power generation system.

Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading (내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석)

  • Kim, Han-Soo;Ahn, Jae-Gyun;Ahn, Hyo-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2014
  • In this paper, internal blast effect of reinforced concrete core structure were investigated using Ansys Autodyn, which is a specialized hydrocode for the analysis of explosion and impact. It is expected that internal blast case can give additional damage to the structure because it causes rebound of blast loads. Therefore, in this paper, the hazard of internal blast effect is demonstrated using UFC 3-340-02 criteria. In addition, analysis result of Autodyn, experimental result regarding rebound of blast load, and example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly. Furthermore, progressive collapse mechanism of core structure which is one of the most important parts in high rise buildings is also analyzed using Autodyn. When internal blasts are loaded to core structure, the core structure is mostly damaged on its corner and front part of core wall from explosives. Therefore, if the damaged parts of core wall are demolished, progressive collapse of the core structure can be initiated.

Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine

  • Schmucker, Hannes;Flemming, Felix;Coulson, Stuart
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.342-351
    • /
    • 2010
  • During the operation of a hydro turbine the fluid mechanical pressure loading on the turbine blades provides the driving torque on the turbine shaft. This fluid loading results in a structural load on the component which in turn causes the turbine blade to deflect. Classically, these mechanical stresses and deflections are calculated by means of finite element analysis (FEA) which applies the pressure distribution on the blade surface calculated by computational fluid dynamics (CFD) as a major boundary condition. Such an approach can be seen as a one-way coupled simulation of the fluid structure interaction (FSI) problem. In this analysis the reverse influence of the deformation on the fluid is generally neglected. Especially in axial machines the blade deformation can result in a significant impact on the turbine performance. The present paper analyzes this influence by means of fully two-way coupled FSI simulations of a propeller turbine utilizing two different approaches. The configuration has been simulated by coupling the two commercial solvers ANSYS CFX for the fluid mechanical simulation with ANSYS Classic for the structure mechanical simulation. A detailed comparison of the results for various blade stiffness by means of changing Young's Modulus are presented. The influence of the blade deformation on the runner discharge and performance will be discussed and shows for the configuration investigated no significant influence under normal structural conditions. This study also highlights that a two-way coupled fluid structure interaction simulation of a real engineering configuration is still a challenging task for today's commercially available simulation tools.

Bird Strike Analysis of Radome Using Smoothed Particle Hydrodynamics Technique (입자완화 유체동역학 기법을 이용한 레이돔 조류충돌해석)

  • Yun, Gangsik;Kim, Youngjin;Kim, Moon-soo;Kim, Jihyeon;Kim, Taehyeong;Yoon, Siyoung;Park, Sungkyun;Seo, Won-gu;Oh, Dongho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.743-751
    • /
    • 2017
  • To evaluate the structural integrity of the helicopter radome, we performed bird strike analysis using SPH (Smoothed Particle Hydrodynamics) technique. Since the SPH method is a meshfree method, there is no phenomenon such as mesh tangling and it is suitable to predict the dispersion behavior of debris and debris cloud generated by high-speed impact. In order to observe the scattering direction of fractured bolts, the analysis were performed under the condition that the fracture occurs at the proof load. As a result of bird strike analysis, there is no secondary damage as well as the damage due to, the dispersion behavior of the bird model, and the scattering of the fractured bolts and radome. From the additional analysis that were performed to determine the actual bolt fracture, only plastic deformation is predicted since the maximum stress of the bolt does not exceed the ultimate stress.

A study on sensing for abnormality of BUS BAR in motor control center (모터컨트롤센터의 BUS BAR 이상 감지를 위한 실험적 연구)

  • Kim, Sung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5838-5842
    • /
    • 2011
  • The study mainly aims to explore how deterioration of motor control center, namely MCC, and vibration put impact on temperature of bus bar as well as temperature change of bolt-nut joint. The motor control center consists of three internal parts (i.e. R, S, T) which are for motor operation of high capacity. Two dimensional mechanism for measuring temperature was designed and manufactured with infrared temperature sensor. Installing it in inner motor control center enabled researcher to monitor temperature of bus bar as well as amount of change of current regularly. Temperature change of bus bar according to load was primarily examined based on a bolted joint in the experiment. It was clearly verified that temperature change of bus bar was proportional to current consumption. Therefore, installing non-contact two dimensional mechanism for measuring temperature in motor control center would be expected to prevent temperature rise owing to overload current and power outage as well as fire accident which can be triggered by poor electrical contact.

Durability Performance Evaluation of PolyUrea for Seismic Retrofitting of RC Structures (구조물 내진 보강용 폴리우레아의 내구 성능 평가)

  • Cho, Chul-Min;Kim, Jang Jay Ho;Lee, Doo-Sung;Kim, Tae-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental study is needed a reinforcing method for seismic load to apply for RC structures because a lot of earthquakes have frequently happened in the world and those also collapsed infrastructures or damaged human lives. The reinforcing effect of PolyUrea (PU) appeared to be excellent under blast and impact about RC structures. In this study, Stiff Type PolyUrea (STPU) had developed by manipulating the ratio of the components of prepolymer and hardener of PU. And the durability performance evaluation of STPU for deterioration and chemical resistance has been performed. Acid environmental exposure test and ultraviolet (UV) exposure test have been performed as the durability performance evaluation for STPU. Concrete carbonation exposure test and freezing and thawing test for concrete coated with STPU have been performed. The experimental result showed that STPU has high resisting capacity and durability in all tests. Therefore, STPU would be used as seismic reinforcement materials.