• Title/Summary/Keyword: impact-load

Search Result 1,587, Processing Time 0.028 seconds

Effects of Packet-Scatter on TCP Performance in Fat-Tree (Fat-Tree에서의 패킷분산이 TCP 성능에 미치는 영향)

  • Lim, Chansook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.215-221
    • /
    • 2012
  • To address the bottleneck problem in data center networks, there have been several proposals for network architectures providing high path-diversity. In devising new schemes to utilize multiple paths, one must consider the effects on TCP performance because packet reordering can make TCP perform poorly. Therefore most schemes prevent packet reordering by sending packets through one of multiple available paths. In this study we show that packet reordering does not occur severely enough to have a significant impact on TCP performance when scattering packets through all available paths between a pair of hosts in Fat-Tree. Simulation results imply that it is possible to find a low-cost solution to the TCP performance problem for Fat-Tree-like topologies.

A Study on the Anti-Rolling Systems for Vessels (선박용 감요장치에 대한 고찰)

  • Kwon, Sun-Young;Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.167-178
    • /
    • 1997
  • It has been expected not only for crew but also for passengers to realize a ship whose rolling and other motions are small as much as possible. Restricting our consideration to the roll reduction, the conventional roll stabilization system, fins or anti-rolling tanks hve been utiized as the actuator. Excessive motions would interfere with the recreational activities of passengers on a cruise ship. Often more than half of the load of a containership is stowed above deck where it is subjected to large acclerations due to rolling. In some situations this may cause some internal damage to the contents of the containers; in more severe situations failure of the lashing can occur and containers may be lost over-board. Underdeck cargo in ordinary cargo ships and bulk commodities in colliers, ore ships and grain ships can shift if the motions become too severe. The purpose of this study is to concentrate on the additions. either internal or external to the hull, that reduce or otherwise improve the motion responses of the hull. It is assumed that the additions are such that their benefit to the motions of the ship outweights any impact on the ability of the ship to perform its assigned task. It is particularly challenging to obtain large improvements in the motion characteristics of existing ships that are being rebuilt or modified for some task not anticipated in their original design. Further the authors will statistically analyze the influence of ruder-roll-yaw coupling motion in the case of application of this advanced control method to various kinds of ship.

  • PDF

Influence of Progressive Consolidation on Consolidation Behavior of Normally Consolidated Clayey Soil with Vertical Drains (연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향)

  • Yune Chan-Young;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.5-18
    • /
    • 2005
  • In this study, the influence of progressive consolidation from the drainage boundary on the subsequent process of consolidation was investigated. Analytical theory and numerical program f3r consolidation of clayey soil were developed based on finite difference method, in which spatial variation of permeability and volume compressibility were implemented. And model ground with normally consolidated clayey soils and a vertical drain at its center were simulated. Various types of soils with different relations between coefficient of volume compressibility and permeability and void ratio were applied. Also numerical simulations based on the properties of the normally consolidated clay at Nakdong River basin and reconstituted kaolinite soil were performed to recognize its practical impact. Consequently, it is found out that retardation of consolidation induced by progressive consolidation is very important to understand consolidation behavior on field conditions and its effect is remarkable at the initial state of consolidation, and increases with plasticity index and applied load.

Evaluation of dynamic properties of extra light weight concrete sandwich beams reinforced with CFRP

  • Naghipour, M.;Mehrzadi, M.
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.457-468
    • /
    • 2007
  • Analytical and experimental investigation on dynamic properties of extra lightweight concrete sandwich beams reinforced with various lay ups of carbon reinforced epoxy polymer composites (CFRP) are discussed. The lightweight concrete used in the core of the sandwich beams was made up of extra lightweight aggregate, Lica. The density of concrete was half of that of the ordinary concrete and its compressive strength was about $100Kg/cm^2$. Two extra lightweight unreinforced (control) beams and six extra lightweight sandwich beams with various lay ups of CFRP were clamped in one end and tested under an impact load. The dimension of the beams without considering any reinforcement was 20 cm ${\times}$ 10 cm ${\times}$ 1.4 m. These were selected to ensure that the effect of shear during the bending test would be minimized. Three other beams, made up of ordinary concrete reinforced with steel bars, were tested in the same conditions. For measuring the damping capacity of sandwich beams three methods, Logarithmic Decrement Analysis (LDA), Hilbert Transform Analysis (HTA) and Moving Block Analysis (MBA) were applied. The first two methods are in time domain and the last one is in frequency domain. A comparison between the damping capacity of the beams obtained from all three methods, shows that the damping capacity of the extra lightweight concrete decreases by adding the composite reinforced layers to the upper and lower sides of the beams, and becomes most similar to the damping of the ordinary beams. Also the results show that the stiffness of the extra lightweight concrete beams increases by adding the composite reinforced layer to their both sides and become similar to the ordinary beams.

Emerging and Established Global Life-Style Risk Factors for Cancer of the Upper Aero-Digestive Tract

  • Gupta, Bhawna;Johnson, Newell W.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.5983-5991
    • /
    • 2014
  • Introduction: Upper aero-digestive tract cancer is a multidimensional problem, international trends showing complex rises and falls in incidence and mortality across the globe, with variation across different cultural and socio-economic groups. This paper seeks some explanations and identifies some research and policy needs. Methodological Approach: The literature illustrates the multifactorial nature of carcinogenesis. At the cellular level, it is viewed as a multistep process involving multiple mutations and selection for cells with progressively increasing capacity for proliferation, survival, invasion, and metastasis. Established and emerging risk factors, in addition to changes in incidence and prevalence of cancers of the upper aero-digestive tract, were identified. Risk Factors: Exposure to tobacco and alcohol, as well as diets inadequate in fresh fruits and vegetables, remain the major risk factors, with persistent infection by particular so-called "high risk" genotypes of human papillomavirus increasingly recognised as also playing an important role in a subset of cases, particularly for the oropharynx. Chronic trauma to oral mucosa from poor restorations and prostheses, in addition to poor oral hygiene with a consequent heavy microbial load in the mouth, are also emerging as significant risk factors. Conclusions: Understanding and quantifying the impact of individual risk factors for these cancers is vital for health decision-making, planning and prevention. National policies and programmes should be designed and implemented to control exposure to environmental risks, by legislation if necessary, and to raise awareness so that people are provided with the information and support they need to adopt healthy lifestyles.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

Estimation of the Stormwater Impoundments Volume Dependent on the Durations of Design Rainfall (계획강우의 지속기간에 따른 저류지용량의 산정)

  • Yun, Yeo-Jin;Lee, Jae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.415-426
    • /
    • 2001
  • After Disaster Impact Assessment(DIA) Program was particed, the wide variety of hydrological data are estimated by introducing the concept of critical storm duration to calculate the stormwater impoundments as the alternative of increasing runoff due to many developments. Critical storm duration is varied by a lot of hydraulic structures, drainage characteristics, temporal distribution of design rainfall, return period, and runoff models. In this study the methods of estimating the proper volume to design the stormwater impoundments are proposed to determine the required volume by comparing and analyzing the maximum stormwater impoundments in accordance with the impoundment volume and rainfall duration by using the concept of storage ratio presented in the existing studies. The methods of determining the critical storm duration of design rainfall which cause the maximum load from the runoff hydrograph will be studied as analyzing rainfall-runoff using the various runoff models and observed data.

  • PDF

The Impact of Nuclear Power Generation on Wholesale Electricity Market Price (원자력발전이 전력가격에 미치는 영향 분석)

  • Jung, Sukwan;Lim, Nara;Won, DooHwan
    • Environmental and Resource Economics Review
    • /
    • v.24 no.4
    • /
    • pp.629-655
    • /
    • 2015
  • Nuclear power generation is a major power source which accounts for more than 30% of domestic electricity generation. Electricity market needs to secure stability of base load. This study aimed at analyzing relationships between nuclear power generation and wholesale electricity price (SMP: System Marginal Price) in Korea. For this we conducted ARDL(Autoregressive Distributed Lag) approach and Granger causality test. We found that in terms of total effects nuclear power supply had a positive relationship with SMP while nuclear capacity had a negative relationship with SMP. There is a unidirectional Granger causality from nuclear power supply to SMP while the reverse was not. Nuclear power is closely related to SMP and provides useful information for decision making.

Transient Characteristics of Wind Turbine-Generator Connected to a Power System (전력계통 연계 풍력-터빈 발전기의 과도특성)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2966-2970
    • /
    • 2013
  • In this paper, a simulation study on dynamic characteristics of wind turbine generators is performed. The generation of electricity using wind turbines is being recently spotlighted as a renewable way. The wind is an infinite primary energy source. Further, other environmental impacts of wind power are limited as well. Therefore, the wind turbine generation itself has many advantages. However, when generators using wind turbines are connected to the conventional power system, the impact of the power system is different from that of the power system that consists of only synchronous generators, especially in dynamic characteristics. Therefore, it is essential to examine the characteristics of wind turbines in order to ensure reliable wind turbine generation in the power system containing wind turbine generators. In this paper, the dynamic characteristics of GE1.5MW wind turbine are simulated by using PSS/E. In the simulation of GE1.5MW wind turbine, wind speed variation, load change and voltage deviation of infinite bus are considered.