• Title/Summary/Keyword: impact zone

Search Result 614, Processing Time 0.026 seconds

A study on the impact wave forces for design of offshore structures (해양구조물 설계에 있어서 쇄파파력의 영향분석)

  • 조규남;윤재준
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-80
    • /
    • 1996
  • The importance of the impact force on the vertical offshore circular structure member in the surf zone due to the breaking wave has been recognized recently. In this paper characteristics of breaking wave forces and the corresponding estimation procedures for them are investigated. For the characterization of the wave forces, three parts, drag force, inertia force, impact force are categorized and identified, respectively. Among them the impact force is maimly studied and the concise form of the force is proposed with the application scheme for the design of offshore circular structure member. The resulting form porposed here for impact force is well coincided with former research results by other people. Except the impact force, so called Morison equation can be employed for the common offshore structure design. The drag force and inertia force are represented as convertionally for the profile except the breaking part. In the numerical example, for thpical sea condition and the member size, the proposed procedures for the breaking wave forces calculation are demonstrated. It is found that the impact force is the most deminant one comparing with inertia and drag forces in the surf zone.

  • PDF

Development and performance evaluation of SB3-level roadside barrier for highway transition zone (고속국도용 SB3등급 전이구간 방호울타리 개발 및 성능평가)

  • Lee, Jungwhee;Cho, Jong-Seok;Lee, Jae-Hyuk
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.13-21
    • /
    • 2017
  • PURPOSES : In this research, an SB3-level roadside barrier for a highway transition zone that meets the newly established guide Installation and Management Guide for Roadside Safety Appurtenance is developed. Its performance is evaluated by a numerical simulation and real-scale vehicle impact test. METHODS : The commercial explicit dynamic software LS-DYNA is utilized for impact simulation. An FE model of a passenger vehicle developed and released by the National Crash Analysis Center (NCAC) at George Washington University and a heavy goods vehicle (HGV) model developed by the TC226/CM-E Work Group are utilized for impact simulation. The original vehicle models were modified to reflect the conditions of test vehicles. The impact positions of the passenger vehicle and truck to the transition guardrail were set as 1/2 and 3/4 of the transition region, respectively, according to the guide. RESULTS : Based on the numerical simulation results of the existing transition barrier, a new structural system with improved performance was suggested. According to the result of a numerical simulation of the suggested structural system, two sets of transition barriers were manufactured and installed for real-scale vehicle impact tests. The tests were performed at a test field for roadside safety hardware of the Korea Highway Corporation Research Institute. CONCLUSIONS : The results of both the real-vehicle impact tests and numerical simulations of the developed transition barrier satisfied the performance criteria, and the results of numerical simulation showed good correlation with the test results.

Low Temperature Impact Toughness and Stress Corrosion Resistance in Duplex Stainless Steel Welds (2상 스테인리스강 용접부의 저온충격인성과 내응력 부식성에 관한 연구)

  • 김효종;이성근
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.151-160
    • /
    • 1995
  • The characteristics of low temperature impact toughness and stress corrosion resistance at boiling MgCl$_2$ solution of GTA and SMA weld of duplex stainless steels have been investigated. The impact toughness was highest at the GTAW weld metal and lowest at the SMAW weld, which was almost the same as that of the SMAW heat-affected zone. This was attributable to influence of austenite-ferrite phase balance, and the degree and nature of precipitation that occurred during welding. The SCC resistance of the weldments was slightly higher than that of the base metal, whereas no difference in the SCC resistance was found between two different weldments.

  • PDF

Investigation of Head-Disk Impact for Development of Ultra-Low Flying HDI (극저부상 HDI 개발을 위한 Head-Disk Impact 연구)

  • 조언정;박노열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.122-126
    • /
    • 2001
  • Magnetic hard disk drive is continually being pushed to reduce head-disk spacing for higher recording densities. The current minimum spacing between the air-bearing slider and disk has been reduced to under 15 nm. In this work, it was investigated if flying height could be lowered under the height of laser bumps. With the reduction of the spinning speed, the flying height was decreased under the height of laser bumps. When a head swept between landing zone and data zone, the head-disk impact was monitored using AE and friction signals. It is demonstrated that magnetic hard disk drive could be operated without tribological failures under the height of laser bumps.

  • PDF

Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach

  • Rousseau, Jessica;Frangin, Emmanuel;Marin, Philippe;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This article focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. The proposed approach is then applied to a rock impact on a concrete slab in order to validate the coupled method and compare computation times.

The Impact of the Incheon Free Economic Zones on Regional Disparities in Incheon (인천 경제자유구역이 인천시 자치구(군)간 지역불균형에 미치는 영향분석)

  • Kim, Bora;Choi, Jinmu
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.86-97
    • /
    • 2014
  • Incheon Free Economic Zone is the first free economic zone specified in 2003 in Korea. Previous research on the Free Economic Zone has focused on the activation of the free economic zone or foreign investment issue at the level of the national economic plan. Related to the development of a free economic zone, studies are currently insufficient on the relevance of the local economy, the development of linkages with hinterland, and the balanced regional development. Therefore, this study tried to investigate the impact of Incheon Free Economic Zone to the local economy through analyzing the causes and characteristics of the imbalance between the regions in Incheon by comparing before (1996~2002) and after (2003~2009) of the Incheon Free Economic Zone legislation (2003). The result shows that development of the free economic zone has not been connected to the local economy activation and the ripple effect on the old town in Incheon. Further, the construction of a large apartment and infrastructure in the free economic zones have increased the disparity between the free zones and the old town.

  • PDF

A Study on Microstructure and Thoughness of Electrogas Weldments (일렉트로가스 용접부의 조직 및 인성에 관한 연구)

  • 이해우;장태원;이윤수;석한길;강성원
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.68-74
    • /
    • 1996
  • The microstructure of HAZ and the mechanical properties in weldments such as hardness and toughness were studied for mild steel and AH36 grade TMCP steel, as increasing heat input with electrogas welding process. The results of this study can be summarized as follow: 1) In the HAZ of mild steel, the width of coarse grained zone was larger than that of the nomalized zone, however in the case of TMCP steel, the nomalized zone was wider than the coarse grained zone. 2) The grain size of HAZ become coarse with increasing heat input. And at the same heat input, the grain size of TMCP steel was more coarser than that of mild steel. 3) According to the change of heat input, the deviation of hardness values was not significant, and the maximum values of hardness was not in HAZ but in the weld metal. And the hardness values in root part was higher than in face part. 4) Even though the HAZ grain size of mild steel was larger than that of TMCP steel, the impact values for mild steel was higher than those for TMCP steel, and the impact values in face part was higher than those in root part.

  • PDF

The Residual Stresses Evaluation of Butt Welded Zone on the Joint Shape in the Titanium Plate (티타늄재 맞대기 용접부의 개선형상에 따른 잔류응력 평가)

  • 성백섭;김일수;김인주;차용훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.290-294
    • /
    • 1997
  • In this study, the welded residual stresses test was carried out with pure titanium and TIG welded material using in chemical plants an airplane frames etc.. The relationship between process parameters and residual stresses is complex since a number of factors are involved. Extensive studies have been carried out to determine the effects of various process parameters on residual stress. The result of micro-hardness about butt welded spacemen was measured of low hardness value in the melting metal zone. The residual stress of welded zone on the Titanium plate by the sectioning method and finite element method was high measured in the spacemen of high current and voltage. Also, compressive residual stress in the range of distance about 15∼20mm from the middle of the deposited metal area is very change. The result of impact test about butt welded spacemen of pure titanium plate was measured of very difference in the welded bead, heat affect zone and base metal, and be measured of high impact value in the heat affect zone. The measure result of welded residual stresses about pure titanium is high measured hen nominal steel plate. The V-Type butt welded spacemen, that of the measurement result on the welded residual stress is high measure then X-Type butt welded spacemen.

  • PDF

Relations Between Impact Damage and Ply Angle Under Same Impact Energy Condition (同一한 衝擊에너지 條件下의 CFRP 斜交積層板의 衝擊損傷과 配向角의 關係)

  • ;笠野英秋
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1824-1832
    • /
    • 1992
  • This study investigated the compressive Young's modulus and the impactinduced damage of CFRP angle-ply laminate under same impact energy condition. The specimens of angle-ply laminate composites [0.deg.$_{6}$/ .theta..deg.$_{10}$/ 0.deg.$_{6}$] with .theta..deg. =30.deg., 45.deg., 60.deg. and 90.deg. were employed, and damaged by steel balls of diameter of 5mm and 10mm propelled by air gun type impact testing machine. The impact damaged zones were observed through a scanning acoustic microscope(SAM), and their cross-sections were observed through a scanning electron microscope(SEM). The compressive Young's moduli before and after impact were measured, and compared with the theoretical values calculated. The results obtained were as follows: (1) The damage areas on the interfacial boundaries showed more severe change on the back side interface than on the impact side interface with increasing ply-angle. (2) The damage areas on the interfacial boundaries became larger with increasing impact velocity or ply-angle. (3) The impact damaged zone showed the delamination on the interfacial boundaries and transverse cracks inside laminas. (4) The impact damaged zone was affected by the impactor size and speed or ply-angle under same impact energy condition. (5) Compressive Young's moduli before and after impact were lower than theoretical value, but showed a similar change according to ply-angle. (6) Compressive Young's moduli after impact were higher than those before impact, but there was no remarkable change in apparent compressive modulus after impact.t.act.

Mechanical Property of Ultra Fine Grained Steel Weld by Hybrid Welding (하이브리드 용접에 의한 세립강 용접부의 기계적 성질에 관한 연구)

  • Dong, H.W.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • The effect of Mn and Ti contents in filler wire on the microstructure and mechanical property of weld metal has been investigated after hybrid welding with ultra fine grained (UFG) steel. The microstructure and distribution of alloy compositions at the top region of weld zone were quite different with those at the bottom region after hybrid welding. The bottom region of weld zone contained higher Mn and Ti contents, and consequently the hardness of bottom region was higher than that of top region. With the increase of Mn and Ti contents in filler wire, the volume percent of acicular ferrite in weld metal decreased, and the weld zone showed higher hardness and better impact property.