• Title/Summary/Keyword: impact test

Search Result 5,469, Processing Time 0.219 seconds

Korea's IT Trade with Major Partners (US, Japan, China) and its Impacts on Domestic Industry (우리나라 주요국(미국, 일본, 중국)과의 IT 무역과 국내 IT 산업으로의 파급효과)

  • Lee, Sang-Yong Tome;Han, Jae-Seung
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.2
    • /
    • pp.39-59
    • /
    • 2011
  • Information Technology (IT) has been working as an engine of growth in Korea since early 1990's. For the next leap of Korean economy and to overcome worldwide financial crisis, Korea's IT industry needs to find a new breakthrough. In this viewpoint, we tried to empirically analyze the impact of Korea's IT trade on domestic industry. Since Korean government is trying to set up a few free trade agreements (FTA) with major trade partners, more accurate understanding of the impact of FTA is required to find the correct way to promote Korea's IT industry. We first looked at the current status of Korea's IT trade with major partners such as the US, Japan, and China to understand the competitiveness of Korea's IT industry. Having done this, we measured the impact of IT trade on domestic industry using Granger causality test. The results showed that the positive impact of trade is bigger on IT industry than on whole industry. Also, the impact of import turned out to be bigger than that of export. Among the major trade partner countries, the US’s and China's impacts are bigger than Japan's impact. Another notable thing is that IT product import from the US has especially big impact on domestic IT industry. Our findings may have certain implications to the FTA related policy.

Numerical Study of Drop/impact test and Shock/impact Survivability Test for ELT(Emergency Locator Transmitter) Operations (ELT(Emergency Locator Transmitter) 운용을 위한 낙하 충격 및 추락생존성 시험에 대한 수치 해석적 연구)

  • Jung, Do-Hee;Baek, Jong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1229-1235
    • /
    • 2008
  • ELT(emergency locator transmitter) has assisted in the rescue of thousands of lives in distress. Aviators, mariners and land users being equipped with distress beacons are capable of transmitting distress signals to the satellites in emergency situations anywhere in the world. In this paper, Drop/Impact simulation was performed for ELT Body-case. FE model for Body-case was constructed with MSC/Dytran and refined using the Karas example simulation for Body-case prototype. Shock/impact survivability analysis was performed for ELT operations. FE model constructed with MSC/Nastran. Transient response analysis for refined ELT model was perfomed for ELT under impact shock loading condition.

Characterization of PETG Thermoplastic Composites Enhanced TiO2, Carbon Black, and POE (TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성)

  • Yu, Seong-Hun;Lee, Jong-hyuk;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.354-362
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability and mechanical properties of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out using various additives such as TiO2, carbon black, polyolefin elastomer, and PETG amorphous resin. The thermal and mechanical properties of the thermoplastic composites, and the Charpy impact strength. The analysis was performed to evaluate the characteristics according to the types of additives. DSC and DMA analyzes were performed for thermal properties, and tensile strength, flexural strength, and tensile strength change rate were measured using a universal testing machine to evaluate mechanical properties. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

Mechanical Behavior of Potato and Sweet Potato under Impact and Compression Loading (감자와 고구마의 충격 및 압축 특성에 관한 연구)

  • Hong J.H.;Kim C.S.;Kim J.Y.;Kim J.H.;Choe J.S.;Chung J.H.;Park J.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.369-375
    • /
    • 2006
  • Mechanical properties of potato and sweet potato were measured under impact and compression loading. The test apparatus consisted of disgital storage oscilloscope and simple mechanisms which can apply compression and impact forces to potatoes and sweet potatoes. The mechanical properties could be measured while the tissues were ruptured in a very short period time less than 10 ms by impact loading. Rupture force, energy, and deformation were measured as mechanical properties of potatoes and sweet potatoes under impact and compression loading. Rupture forces under impact and compression loading were in the range of 84.1 to 93.7N and 128.9 to 132.2N for external tissues and 60.1 to 64.8N and 158.9 to 171.1N for internal tissues of potato and sweet potato, respectively. Compression speeds and drop heights for each test were in the range of 1.25 to 62.5mm/min and 8 to 24cm.

The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment (Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향)

  • Song, Jun-Hyouk;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)

Investigation of the Stress-Wave Propagation In Improve the Reliability of the Impact-Echo Method (충격반향기법의 신뢰성 향상을 위한 탄성파 파동전파 특성의 연구)

  • 조미라
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.266-274
    • /
    • 2002
  • The impact-echo test, which is to evaluate the integrity of concrete and masonry structures nondestructively, is an excellent method in the practical application. However, there are cases that the Impact-Echo testing nay result in the low reliability. In this study, the reliability of the Impact-Echo testing was investigated through the numerical simulation of the Impact-Echo testing. The finite element analysis and the analysis based on the dynamic stiffness matrix method was incorporated for the numerical simulation, in which the cases of a sandwiched shear stiffness, an incr+easing or decreasing stiffness, and a homogeneous stiffness. Based on the results of the analysis were considered, this study proposed the approaches to Improve the reliability of the Impact-Echo testing.

Comparative study on deformation and mechanical behavior of corroded pipe: Part I-Numerical simulation and experimental investigation under impact load

  • Ryu, Dong-Man;Wang, Lei;Kim, Seul-Kee;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.509-524
    • /
    • 2017
  • Experiments and a numerical simulation were conducted to investigate the deformation and impact behavior of a corroded pipe, as corrosion, fatigue, and collision phenomena frequently occur in subsea pipelines. This study focuses on the deformation of the corrosion region and the variation of the geometry of the pipe under impact loading. The experiments for the impact behavior of the corroded pipe were performed using an impact test apparatus to validate the results of the simulation. In addition, during the simulation, material tests were performed, and the results were applied to the simulation. The ABAQUS explicit finite element analysis program was used to perform numerical simulations for the parametric study, as well as experiment scenarios, to investigate the effects of defects under impact loading. In addition, the modified ASME B31.8 code formula was proposed to define the damage range for the dented pipe.

Damage Behaviors by Particle Impact Energy of $Al_2O_3-TiO_2$ Coated Glass Specimen ($Al_2O_3-TiO_2$ 용사코팅된 유리의 입자충격 에너지에 따른 손상거동)

  • Lee, Moon-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.107-114
    • /
    • 2012
  • Fracture of brittle material due to dynamic load such a particle impact has been reported by many researchers as the fracture behavior by variation of stress for a short minute. Especially, the brittle material, such a ceramic, applied to the structural component of machine, is considered as the important project. In order to evaluate the improvement of impact resistance, the particle impact test for the $Al_2O_3-TiO_2$ coated glass is practiced. And then, the damage variation according to the impact energy of steel ball was evaluated. There was a large improvement by the ceramic coating on the surface of a glass substrate. The damage volume was especially imported to evaluate damage behavior in quantity. These data were plotted on logarithmic coordinate and experimental equations were induced by data analysis based on test results. And the variation of critical energy for crack initiation was analyzed with critical impact energy when each crack occurs.

Evaluation of the Dynamic Characteristics of Rubber Structure under Impact Force (충격하중을 받는 고무구조물의 동특성 평가)

  • Kim, Wan-Doo;Kim, Dong-Jin;Lee, Young-Shin
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.40-48
    • /
    • 2006
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. In the finite element analysis, elastic modulus of rubber using impact force was used as dynamic modulus, which are measured and predicted with dynamic property test and WLF model. The analysis result was coincided with the experimental results.

Study on Side Impact Test Procedure of Hydrogen Bus (수소버스 측면충돌 시험방법 연구)

  • Kim, Kyungjin;Shin, Jaeho;Han, Kyeonghee;In, Jeong Min;Shim, Sojung;Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Recently hydrogen fuel cell buses have been deployed for the public transportations. In order to introduce buses fueled by hydrogen successfully, the research results of hydrogen bus safety should be discussed and investigated significantly. Especially, Korean government drives research in terms of various applications of hydrogen energy to replace the conventional fuel energy resources and to improve the safety evaluation. Thus it is necessary to examine vehicle crashworthiness under side impact loadings. This study was focused on the simulation result evaluation of full bus model and simplified bus model with hydrogen fuel tank module and mounting system located below floor structure due to the significance of bus side impact accidents. The finite element models of hydrogen bus, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of two side impact models. Computational results and research discussion showed the conceptual side impact framework to evaluate hydrogen bus crashworthiness.