• Title/Summary/Keyword: impact simulation

Search Result 2,329, Processing Time 0.027 seconds

Dose Evaluation of Childhood Leukemia in Total Body Irradiation (소아백혈병의 전신방사선조사시 선량평가)

  • Lee, Dongyeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Donghyun;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.259-264
    • /
    • 2013
  • Total body irradiation in the treatment of childhood leukemia, which is one of the pre-treatment with stem cell transplantation is being used, the current organization using compensators are treated. However, under the terms of the compensator organization long-term impact on the human body, it is difficult to assess directly. In this study, we use the mathematical simulation of radiation exposures body energy and the distance to the crew and the patient (source surface distance, SSD), and patients with tissue compensators change of the distance along the body of the organ doses were evaluated. As a result, the surface dose of energy 4 MV, SSD 280 cm, tissue compensators and the patient when the distance 30 cm 5.84 G / min showed the highest levels. In addition, patients with tissue compensators and the distance apart when 30 cm TBI represents the ideal dose distribution was found.

Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar (고주파 능동소나를 이용한 저층 침적 위험유해물질 대체물질 음향 탐지 실험 및 모의)

  • Han, Dong-Gyun;Seo, Him Chan;Choi, Jee Woong;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.459-466
    • /
    • 2018
  • Hazardous and Noxious Substances (HNS) are defined as substances that are likely to create a significant impact on human health and marine ecosystem when they are released into the marine environment. Recently, as the volume of HNS transported by ships increases, the rate of leakage accidents also increases. Therefore, research should be conducted to control and monitor sunken materials from the viewpoint of technology development for hazardous material leakage accident response. In this paper, acoustic detection experiments were carried out using HNS substitute materials in order to confirm the possibility of acoustic detection of sunken HNS on the sediment. The castor oil, which has a similar acoustic impedance with chloroform, is used as a substitute. 200 kHz high frequency signals were used to discriminate the reflected signals and measure reflection loss from the interface between water and castor oil. The reflection loss measured is in good agreement with the modeling results, showing a possibility of acoustic detection for sunken HNS.

Core-aware Cache Replacement Policy for Reconfigurable Last Level Cache (재구성 가능한 라스트 레벨 캐쉬 구조를 위한 코어 인지 캐쉬 교체 기법)

  • Son, Dong-Oh;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.1-12
    • /
    • 2013
  • In multi-core processors, Last Level Cache(LLC) can reduce the speed gap between the memory and the core. For this reason, LLC has big impact on the performance of processors. LLC is composed of shared cache and private cache. In computer architecture community, most researchers have mainly focused on the management techniques for shared cache, while management techniques for private cache have not been widely researched. In conventional private LLC, memory is statically assigned to each core, resulting in serious performance degradation when the workloads are not fairly distributed. To overcome this problem, this paper proposes the replacement policy for managing private cache of LLC efficiently. As proposed core-aware cache replacement policy can reconfigure LLC dynamically, hit rate of LLC is increases drastically. Moreover, proposed policy uses 2-bit saturating counters to improve the performance. According to our simulation results, the proposed method can improve hit rates by 9.23% and reduce the access time by 12.85% compared to the conventional method.

Estimation of Traffic Safety Improvement Effect of Forward Collision Warning (FCW) (전방충돌경보(FCW)의 교통안전 증진효과 추정)

  • Kim, Hyung-kyu;Lee, Soo-beom;Lee, Hye-rin;Hong, Su-jeong;Min, hye-Ryung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.43-57
    • /
    • 2021
  • The Forward Collision Warning, a representative technology of the Advanced Driver Assistance Systems, was selected as the target technology. The cognitive response time, deceleration, and impact were selected as the measures of effectiveness. And the amount of change with and without the Forward Collision Warning was measured. The experimental scenarios included a sudden stop event (1) of the vehicle in front of the driver and an event (2) in which the vehicle intervened in the next lane. All experiments were divided into day and night. As a result of the analysis, response time and the deceleration rate decreased when the forward collision warning system was installed. It was analyzed that the driver's risk situation could be detected quickly and the number of front-end collisions could be reduced as a result. Reflecting the driver's operating habits and diversifying the experimental scenarios will increase the installation effectiveness of ADAS and be used to estimate the effectiveness of other technologies.

A Study on Economic Effects of NAMA Negotiations in the WTO on Automotive Industry of the World (WTO 비농산물협상이 전세계 자동차산업에 미치는 영향에 관한 연구)

  • Ko, Jong-Hwan
    • International Area Studies Review
    • /
    • v.15 no.3
    • /
    • pp.95-126
    • /
    • 2011
  • The objective of this study is to quantify the potential economic effects of Non-Agricultural Market Access (NAMA) negotiations of the WTO on automotive industry of the world using a multi-region, multi-sector Computable General Equilibrium (CGE) model with 21 countries/regions and 22 sectors. According to the December 2008 NAMA modalities text, issued by the chair of the negotiation on NAMA, three different scenarios of tariff liberalization of NAMA are conducted on the basis of the Swiss formula with a coefficient of 8 for developed members and 20 for developing (scenario 1), with a coefficient of 8 for developed members and 22 for developing (scenario 2) and with a coefficient of 8 for developed members and 25 for developing (scenario 3). Simulation results show potential economic effects at the macroeconomic and microeconomic level of 21 countries concerned. In particular, Korea is to be one of the winners of tariff liberalization of NAMA in the WTO and Korean automotive industry is to benefit from it to a large extent in terms of its output, domestic sales, exports and trade balance, which implies that Korea needs to actively engage in NAMA negotiations of the WTO.

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher;Ahmed, Nisar;Khalid, Perveiz;Badar, Muhammad A.;Akram, Sohail;Hussain, Mureed;Anwar, Muhammad A.;Mahmood, Azhar;Ali, Shahid;Rehman, Anees U.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.343-354
    • /
    • 2019
  • The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

Post-2020 Emission Projection and Potential Reduction Analysis in Agricultural Sector (2020년 이후 농업부문 온실가스 배출량 전망과 감축잠재량 분석)

  • Jeong, Hyun Cheol;Lee, Jong Sik;Choi, Eun Jung;Kim, Gun Yeob;Seo, Sang Uk;Jeong, Hak Kyun;Kim, Chang Gil
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.233-241
    • /
    • 2015
  • In 2014, the United Nations Framework Convention on Climate Change (UNFCCC) agreed to submit the Intended Nationality Determined Contributions (INDCs) at the conference of parties held in Lima, Peru. Then, the South Korean government submitted the INDCs including GHGs reduction target and reduction potential on July, 2015. The goal of this study is to predict GHGs emission and to analyze reduction potential in agricultural sector of Korea. Activity data to estimate GHGs emission was forecast by Korea Agricultural Simulation Model (KASMO) of Korea Rural Economic Institute and estimate methodology was taken by the IPCC and guideline for MRV (Measurement, Reporting and Verification) of national greenhouse gases statistics of Korea. The predicted GHGs emission of agricultural sectors from 2021 to 2030 tended to decrease due to decline in crop production and its gap was less after 2025. Increasing livestock numbers such as sheep, horses, swine, and ducks did not show signigicant impact the total GHGs emission. On a analysis of the reduction potential, GHGs emission was expected to reduce $253Gg\;CO_{2-eq}$. by 2030 with increase of mid-season water drainage area up to 95% of total rice cultivation area. The GHGs reduction potential with intermittent drainage technology applied to 10% of the tatal paddy field area, mid-drainage and no organic matter would be $92Gg\;CO_{2-eq}$. by 2030.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

Analysis of climate change impact on flow duration characteristics in the Mekong River (기후변화에 따른 메콩강 유역의 미래 유황변화 분석)

  • Lee, Daeeop;Lee, Giha;Song, Bonggeun;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to analyze the Mekong River streamflow alteration due to climate change. The future climate change scenarios were produced by bias corrections of the data from East Asia RCP 4.5 and 8.5 scenarios, given by HadGEM3-RA. Then, SWAT model was used for discharge simulation of the Kratie, the main point of the Mekong River (watershed area: $646,000km^2$, 88% of the annual average flow rate of the Mekong River). As a result of the climate change analysis, the annual precipitation of the Kratie upper-watershed increase in both scenarios compared to the baseline yearly average precipitation. The monthly precipitation increase is relatively large from June to November. In particular, precipitation fluctuated greatly in the RCP 8.5 rather than RCP 4.5. Monthly average maximum and minimum temperature are predicted to be increased in both scenarios. As well as precipitation, the temperature increase in RCP 8.5 scenarios was found to be more significant than RCP 4.5. In addition, as a result of the duration curve comparison, the streamflow variation will become larger in low and high flow rate and the drought will be further intensified in the future.

Method for evaluating the safety performance and protection ability of the mobile steel protective wall during the high-explosive ammunition test (고폭탄 탄약시험 간 이동형 강재 방호벽의 안전성능 판단 및 유효 방호력 평가 방법)

  • Jeon, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • In this study, a series of processes for evaluating the effective protection against barriers that should be equipped in institutions that perform reliability tests on high-risk ammunition, such as high-explosive ammunition, were introduced. The impact that high-explosive bombs can have on personnel includes damage to the eardrum and lungs caused by explosion overpressure and penetrating wounds that can be received by fragments generated simultaneously with the explosion. Therefore, a high-explosive with COMP B explosives as its contents were set up, and an explosion protection theory investigation to calculate the degree of damage, numerical calculations and simulations were performed to verify the protection power. A numerical calculation revealed the maximum explosion overpressure on the protective wall when the high-explosive exploded and the penetration force of the fragment against a 50 mm-thick protective wall to be 77.74 kPa and 41.34 mm, respectively. In the simulation verification using AUTODYN, the maximum explosion overpressures affecting the firewall and personnel were 56.68 kPa and 18.175 kPa, respectively, and the penetration of fragments was 35.56 mm. This figure is lower than the human damage limit, and it was judged that the protective power of the barrier would be effective.