• Title/Summary/Keyword: impact signal

Search Result 555, Processing Time 0.028 seconds

A Study on Filter Algorithm to Remove Mixed Noise (복합잡음 제거를 위한 필터 알고리즘에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.281-284
    • /
    • 2015
  • Digital image processing is utilized in various application fields by rapid development of memory cell. However, the noise occurs with various causes in the process of data processing process and various methods have been studied in order to remove such noises. In general, the image is damaged by the mixed noise which has different characteristics each other. This paper proposed a filter algorithm which processes the data according to shape of noise in order to mitigate the impact of the mixed noise added to the image. In addition, this paper compared this filter algorithm with the current methods and used PSNR(peak signal to noise ratio) as a criterion of judgment.

  • PDF

New uroflowmetry technique measuring hydraulic pressure for prostate diagnostics (전립선 진단을 위한 수압 측정 방식의 새로운 요 유량 계측기법)

  • Kim, Kyung-Ah;Choi, Sung-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • Uroflowmetry is non-invasive and easily performed to diagnose benign prostate hypertrophy (BPH) frequent in aged men. Weight change during urination is usually measured to estimate the urinary flow rate by a load cell, but sensitive to any impacts against the bottom of the container, leading to unnecessary noise generation. Moreover, load cells are relatively expensive raising the production cost. The present study proposed a new technique, measuring hydraulic pressure on the bottom of the urine container to evaluate the urinary flow rate. Low cost pressure transducer enabled almost perfectly linear relationship between the urine volume and the hydraulic pressure. During both the simulated and human urination experiment, variance of the pressure signal was more than 50 % smaller than the weight signal acquired by a load cell, which demonstrated that the impact noise was decreased to a great degree by pressure compared to weight measurement.

ISI and PAPR Immune IEEE 802.11p Channels Based on Single-Carrier Frequency Domain Equalizer

  • Ali, Ahmed;Dong, Wang;Renfa, Li;Eldesouky, Esraa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5513-5529
    • /
    • 2016
  • Doppler Effect is a prominent obstacle in vehicular networks, which dramatically increase the Bit-Error-Rate (BER). This problem is accompanied with the presence of the Orthogonal Frequency Division Multiplexing (OFDM) systems in which the Doppler shift interrupts the subcarriers orthogonality. Additionally, Inter-Symbol Interference (ISI) and high Peak-to-Average Power Ratio (PAPR) are likely to occur which corrupt the received signal. In this paper, the single-carrier combined with the frequency domain equalizer (SC-FDE) is utilized as an alternative to the OFDM over the IEEE 802.11p uplink vehicular channels. The Minimum Mean Squared Error (MMSE) and Zero-Forcing (ZF) are employed in order to study the impact of these equalization techniques along with the SC-FDE on the propagation medium. In addition, we aim to enhance the BER, improve the transmitted signal quality and achieve ISI and PAPR mitigation. The proposed schemes are investigated and we found that the MMSE outperforms the ZF equalization under different Doppler shift effects and modulations.

A 60GHz Wireless Cooperative Communication System Based on Switching Beamforming

  • Shi, Wei;Wang, Jingjing;Liu, Yun;Niu, Qiuna;Zhang, Hao;Wu, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1590-1610
    • /
    • 2016
  • The challenge of penetrating obstacles along with impact from weak multipath effects makes 60GHz signal very difficult to be transmitted in non-line of sight (NLOS) channel. So 60GHz system is vulnerable to obstructions and thus likely results in link interruption. While the application of cooperative technology to solve link blockage problemin 60GHz system should consider the characteristic of directional transmission for 60GHz signal. Therefore in this paper a system is proposed to solve the link blockage problem in 60GHz NLOS communication environment based on the concept of cooperation and also the beamforming technology, which is the basis of directional transmission for 60GHz communication system. The process of anti-blockage solution with cooperative communication is presented in detail, and the fast switching and recovery schemes are well designed. The theoretical values of symbol error rate (SER) using decode and forward (DF) cooperation and amplify and forward (AF) cooperation are presented respectively when the common channel interference exists. Simulation results demonstrate that the performance based on DF cooperation is better than the performance based on AF cooperation when directional transmission is used.

Failure detection of composite structures using a fiber Bragg grating sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 파손 검출)

  • 고종인;김천곤;홍창선
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.28-33
    • /
    • 2004
  • Failure detection in a cross-ply laminated composite beam under tensile loading were performed using a fiber Bragg grating (FBG) sensor. A Passive Mach-Zehnder interferometric demodulator was proposed to enhance sensitivity and bandwidth. The proposed FBG sensor system without active device such as a phase modulator is very simple in configuration, easy to implement and enables the measurement of high-frequency vibration with low strain amplitude such as impact or failure signal. Failure signals detected by a FBG sensor had offset value corresponding to the strain shift with vibration at a maximum frequency of several hundreds of kilohertz. at the instant of transverse crack propagation in the 90 degree layer of composite beam.

High Diversity Transceiver for Low Power Differentially Encoded OFDM System

  • Nadeem, Faisal;Zia, Muhammad;Mahmood, Hasan;Bhatti, Naeem;Haque, Ihsan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.90-99
    • /
    • 2016
  • In this work, we investigate differentially encoded blind transceiver design in low signal-to-noise ratio (SNR) regimes for orthogonal frequency-division multiplexing (OFDM) signaling. Owing to the fact that acquisition of channel state information is not viable for short coherence times or in low SNR regimes, we propose a time-spread frequency-encoded method under OFDM modulation. The repetition (spreading) of differentially encoded symbols allows us to achieve a target energy per bit to noise ratio and higher diversity. Based on the channel order, we optimize subcarrier assignment for spreading (along time) to achieve frequency diversity of an OFDM modulated signal. We present the performance of our proposed transceiver design and investigate the impact of Doppler frequency on the performance of the proposed differentially encoded transceiver design. To further improve reliability of the decoded data, we employ capacity-achieving low-density parity-check forward error correction encoding to the information bits.

High Frequency Signal Analysis of Fuel Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 연료펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1099-1102
    • /
    • 2017
  • High frequency signals are analyzed which are measured at the inlet / outlet pipeline and pump casing during cavitation tests of the fuel pump for the liquid rocket engine. RMS values of each data are shown according to the cavitation number and compared with those of the LOx pump tests and the impact of the cavitation instability is also explored. Analogies about the cavitation number are confirmed between high frequency data of both pumps. In addition, the cavitation instability is found in all the signals and has an affect on the outlet pressure pulsation of the fuel pump.

  • PDF

Spectral Analysis of Flickering Effects in Binary Dimmable Visible Light Communication (조명의 디밍을 지원하는 이진 가시광 통신에 대한 플리커의 주파수 분석)

  • Lee, Sang Hyun;Kwon, Jae Kyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.240-245
    • /
    • 2015
  • This paper presents an impact of flicker for various binary modulations of visible light communication (VLC) under dimming requirement. While previous approaches consider the statistics of the signal that cannot capture contributions of dynamic impacts of flicker, the power spectral density is evaluated for various VLC transmission schemes of dimming support. This enables to compare transmission schemes with the contribution of low and intermediate frequency components to flicker. Numerical results show that analog dimming has advantages over other techniques in terms of flicker and signal processing with waveforms and symbol distribution allows to mitigate flicker effects.

The Analysis of Effect for Photocoupler by Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파에 의한 포토커플러 영향 분석)

  • Lee, Sung-Woo;Huh, Chang-Su;Seo, Chang-Su;Jin, In-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • This study analyzed the change of electrical characteristics of a photocoupler when a narrow-band electromagnetic wave was combined with the photocoupler. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The EUT was Photocoupler (6N139) and the input signal was divided into two types: a square pulse and the second signal is 0 V. The malfunction of the photocoupler was confirmed by monitoring the variation in the output voltage of the photocoupler. As a result of the experiment, changes in the malfunctioning was observed as the electric field was increased. There are three types of malfunction modes: delay, output voltage off, and fluctuation. Bit errors were analyzed to verify the electrical characteristics of the photocoupler by narrow-band electromagnetic waves. The result of this study can be used as basic data for the effect analysis of photocoupler protection and impact analysis of high-power electromagnetic waves.

Impact of the Gain-saturation Characteristic of Erbium-doped Fiber Amplifiers on Suppression of Atmospheric-turbulence-induced Optical Scintillation in a Terrestrial Free-space Optical Communication System

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • We have evaluated the suppression effect of atmospheric-turbulence-induced optical scintillation in terrestrial free-space optical (FSO) communication systems using a gain-saturated erbium-doped fiber amplifier (EDFA). The variation of EDFA output signal power has been measured with different amounts of gain saturation and modulation indices of the optical input signal. From the measured results, we have found that the peak-to-peak power variation was decreased drastically below 2 kHz of modulation frequency, in both 3-dB and 6-dB gain compression cases. Then, the power spectral density (PSD) of optical scintillation has been calculated with Butterworth-type transfer function. In the calculation, different levels of atmospheric-turbulence-induced optical scintillation have been taken into account with different values of the Butterworth cut-off frequency. Finally, the suppression effect of optical scintillation has been estimated with the measured frequency response of the EDFA and the calculated PSD of the optical scintillation. From our estimated results, the atmospheric-turbulence-induced optical scintillation could be suppressed efficiently, as long as the EDFA were operated in a deeply gain-saturated region.