• 제목/요약/키워드: impact property

검색결과 739건 처리시간 0.026초

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Effect of tunnel fire: Analysis and remedial measures

  • Choubey, Bishwajeet;Dutta, Sekhar C.;Kumar, Virendra
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.701-709
    • /
    • 2021
  • The paper aims at improving the understanding and mitigating the effects of tunnel fires that may breakout due to the burning fuel and/or explosion within the tunnel. This study particularly focuses on the behavior of the commonly used horse shoe geometry of tunnel systems. The problem has been obtained using an adequate well-established program incorporating the Lagrangian approach. A transient-thermo-coupled static structural analysis is carried out. The effects of radiation and convection to the outer walls of the tunnel is studied. The paper also presents the impact of the hazard on the structural integrity of the tunnel. A methodology is proposed to study the tunnel fire using a model which uses equivalent steel sheet to represent the presence of reinforcements to improve the computational efficiency with adequate validation. A parametric study has been carried out and the effect of suitable lining property for mitigating the fire hazard is arrived at. Detailed analysis is done for the threshold limits of the properties of the lining material to check if it is acceptable in all aspects for the integrity of the tunnel. The study may prove useful for developing insights for ensuring tunnel fire safety. To conduct such studies experimentally are tremendously costly but are required to gain confidence. But, scaled models, as well as loading and testing conditions, cannot be studied by many trials experimentally as the cost will shoot up sharply. In this context, the results obtained from such computational studies with a feasible variation of various combinations of parameters may act as a set of guidelines to freeze the adequate combination of various parameters to conduct one or two costly experiments for confidence building.

Effect of insect-resistant genetically engineered (Bt-T) rice and conventional cultivars on the brown planthopper (Nilaparvata lugens Stål)

  • Sung-Dug, Oh;Eun Ji, Bae;Kijong, Lee;Soo-Yun, Park;Myung-Ho, Lim;Doh-Won, Yun;Seong-Kon, Lee;Gang-Seob, Lee;Soon Ki, Park;Jae Kwang, Kim;Sang Jae, Suh
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.511-520
    • /
    • 2022
  • Insect-resistant transgenic rice (Bt-T) expresses a toxic protein (mcry1Ac1) derived from the soil bacterium Bacillus thuringiensis found in the rice cultivar Dongjin with an insecticidal property against rice leaf roller (Cnaphalocrocis medinalis). In this study, to investigate the impact of Bt-T on non-target organisms, the feed and oviposition preferences and biological parameters of brown planthopper (Nilaparvata lugens Stål) were comparatively analyzed in four rice cultivars: Dongjin (parent variety), Ilmi (reference cultivar), Chinnong (brown planthopper resistant cultivar) and Bt-T. In the Bt-T and Dongjin cultivars, the feed preferences were 32.4 ± 8.3 and 34.1 ± 6.8%, and the oviposition preferences were 32.5 ± 5.1 and 30.0 ± 5.3% respectively, and there was no statistical significance between these rices. Additionally, in the Bt-T and Dongjin cultivars, the total lifespans from egg to adult were 39.5 ± 6.9 and 40.0 ± 5.8 days, and the weights of adult females were 1.78 ± 0.14 and 1.72 ± 0.16 mg, respectively. Therefore, there was no statistical difference in the biological parameters between these two varieties. Overall, the results indicate that the insect-resistant transgenic rice (Bt-T) did not negatively affect the reproduction and life cycle of brown planthopper, a non-target organism.

Normative-Legal and Information Security of Socio-Political Processes in Ukraine: a Comparative Aspect

  • Goshovska, Valentyna;Danylenko, Lydiia;Chukhrai, Ihor;Chukhrai, Nataliia;Kononenko, Pavlo
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.57-66
    • /
    • 2022
  • The aim of the article is to investigate socio-political processes in Ukraine on the basis of institutional and behavioral approaches, in particular their regulatory and informational support. Methodology. To determine the nature and content of sociopolitical processes, the following approaches have been used: 1. Institutional approach in order to analyze the development of Ukraine's political institutions. 2. The behavioral approach has been used for the analysis of socio-political processes in Ukraine in the context of political behavior of citizens, their political activity which forms the political culture of the country. Results. The general features of the socio-political situation in Ukraine are as follows: the formed model of government, which can be conditionally described as "presidential"; public demand for new leaders remains at a high level; the society has no common vision of further development; significant tendency of reduction of real incomes of a significant part of the society and strengthening of fiscal pressure on businessmen will get a public response after some time. Increasing levels of voice, accountability, efficiency of governance and the quality of the regulatory environment indicate a slow change in the political system, which will have a positive impact on public sentiment in the future. At the same time, there has been little change in the quality of Ukraine's institutions to ensure political stability, the rule of law and control of corruption. There are no cardinal changes in the development of the institution of property rights, protection of intellectual rights, changes in the sphere of ethics and control of corruption. Thus, Ukraine's political institutions have not been able to bring about any change in the social-political processes. Accordingly, an average level of trust and confidence of citizens in political institutions and negative public sentiment regarding their perception and future change can be traced in Ukraine.

Application of Finite Element Analysis for Structural Stability Evaluation of Modern and Contemporary Sculptures: 'Eve 58-1' by Man Lin Choi

  • Kwon, Hee Hong;Shin, Jeong Ah;Cho, Nam Chul
    • 보존과학회지
    • /
    • 제38권4호
    • /
    • pp.277-288
    • /
    • 2022
  • 'Eve 58-1', the subject of this study is a statue made of plaster and its structural stability was evaluated by utilizing the CAE program in order to prevent the risk of damage arising from impact and vibration that are generated during the packaging and transportation process given its material characteristics. CAE is an abbreviation for Computer Applied Engineering for realization by predicting changes at the time of application of virtual physical energy. It is applied by reflecting the physical property conditions and each boundary condition of plaster, and the digital images of the internal and external structure of the work were acquired through 3D scanning and CT analysis for interpretation by executing finite element modeling. When acceleration is applied to the work in the direction of its own weight, the left-right side and the front-rear side, it was possible to confirm a maximum displacement value of 15.24 mm in the head section of the front-rear side direction that has been tilted by approximately 27° from the Y-axis and the largest stress value of 12.46 MPa was at the left ankle section. The corresponding results confirmed that the left ankle section is the most vulnerable area and the section for which precautions need to be exercised and supplemented at the time of transporting the work by means of objective values.

Development of flood hazard and risk maps in Bosnia and Herzegovina, key study of the Zujevina River

  • Emina, Hadzic;Giuseppe Tito, Aronica;Hata, Milisic;Suvada, Suvalija;Slobodanka, Kljucanin;Ammar, Saric;Suada, Sulejmanovic;Fehad, Mujic
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.505-524
    • /
    • 2022
  • Floods represent extreme hydrological phenomena that affect populations, environment, social, political, and ecological systems. After the catastrophic floods that have hit Europe and the World in recent decades, the flood problem has become more current. At the EU level, a legal framework has been put in place with the entry into force of Directive 2007/60/EC on Flood Risk Assessment and Management (Flood Directive). Two years after the entry into force of the Floods Directive, Bosnia and Herzegovina (B&H), has adopted a Regulation on the types and content of water protection plans, which takes key steps and activities under the Floods Directive. The "Methodology for developing flood hazard and risk maps" (Methodology) was developed for the territory of Bosnia and Herzegovina, following the methodology used in the majority of EU member states, but with certain modifications to the country's characteristics. Accordingly, activities for the preparation of the Preliminary Flood Risk Assessment for each river basin district were completed in 2015 for the territory of Bosnia and Herzegovina. Activities on the production of hazard maps and flood risk maps are in progress. The results of probable climate change impact model forecasts should be included in the preparation of the Flood Risk Management Plans, which is the subsequent phase of implementing the Flood Directive. By the foregoing, the paper will give an example of the development of the hydrodynamic model of the Zujevina River, as well as the development of hazard and risk maps. Hazard and risk maps have been prepared for medium probability floods of 1/100 as well as for high probability floods of 1/20. The results of LiDAR (Light Detection and Ranging) recording were used to create a digital terrain model (DMR). It was noticed that there are big differences between the flood maps obtained by recording LiDAR techniques in relation to the previous flood maps obtained using georeferenced topographic maps. Particular attention is given to explaining the Methodology applied in Bosnia and Herzegovina.

서비스무역통계를 활용한 업종별 경쟁력 분석 (Analysing Competitiveness by Service Classifications using EBOPS)

  • 강효원
    • 무역학회지
    • /
    • 제41권5호
    • /
    • pp.163-185
    • /
    • 2016
  • 2015년 우리나라는 약 9,632억 달러의 무역규모와 약 902억 달러의 상품무역흑자를 달성한 반면, 서비스무역은 약 152억 달러의 적자를 기록하였다. WTO에 따르면 서비스무역은 부가가치 및 고용 창출효과가 높고, 국민의 소득수준, 삶의 질 등과 밀접하게 연결되는 특성을 가지고 있다. 본 연구는 2006년부터 2015년까지 12개 항목의 서비스무역 세분류통계 정보를 분석하고 지난 10년간 업종별 서비스무역의 대외경쟁력을 측정해 보았다. 분석결과 첫째, 상품무역규모대비 서비스무역규모는 점차 증가하고 있다. 둘째, 서비스무역 업종별 경쟁력분석을 통해 정책의 수립 및 지원의 우선순위를 고려할 수 있다. 마지막으로 서비스무역 내 업종 간 연계성과 서비스무역과 상품무역 간 연계성을 고려한 정책과제 수립이 필요하다고 할 수 있다.

  • PDF

LPG 충전소의 가스누출에 따른 피해예측 및 감소방안 (Predicting and Preventing Damages from Gas Leaks at LPG Stations)

  • 양용호;공하성
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.577-585
    • /
    • 2023
  • 이 연구는 LPG 충전소의 가스누출로 발생이 예상되는 화재 및 폭발에 따른 피해예측에 ALOHA 프로그램을 적용 영향범위와 거리를 도식화함으로 피해방지 방안을 제시하였다. LPG 충전소에서 프로판 가스가 누출될 경우 LPG 충전소 주변지역 주민들에게 호흡곤란 등의 인명피해 및 건물파괴 등 재산피해를 입히는 것으로 나타났다. 이의 감소방안으로 첫째 LPG 충전소의 위험물안전관리자는 수시로 계측기와 안전밸브가 제대로 작동하는지 점검하여 누출을 사전에 방지할 필요가 있다. 둘째 LPG 충전소에서 저장탱크에 충전하는 작업은 위험물안전관리법 규정에 따라 "위험물안전관리자 교육"을 받고, 소방관서에서 "위험물안전관리자"로 선임된 사람의 책임하에 해야 한다는 것이다. 셋째 LPG차량의 과충전 방지장치 등 각종 안전장치의 기능을 평상시 정기적으로 점검할 필요가 있다. 마지막으로 LPG 충전소에 가스가 누출될 때 정전기에 의해 화재가 발생할 수 있으므로 정전기를 방지할 수 있는 작업복·작업화를 착용하는 등의 조치로 정전기발생을 억제하는 것이 바람직하다.

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Simulation and Analysis of Wildfire for Disaster Planning and Management

  • Yang, Fan;Zhang, Jiansong
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.443-449
    • /
    • 2022
  • With climate change and the global population growth, the frequency and scope of wildfires are constantly increasing, which threatened people's lives and property. For example, according to California Department of Forestry and Fire Protection, in 2020, a total of 9,917 incidents related to wildfires were reported in California, with an estimated burned area of 4,257,863 acres, resulting in 33 fatalities and 10,488 structures damaged or destroyed. At the same time, the ongoing development of technology provides new tools to simulate and analyze the spread of wildfires. How to use new technology to reduce the losses caused by wildfire is an important research topic. A potentially feasible strategy is to simulate and analyze the spread of wildfires through computing technology to explore the impact of different factors (such as weather, terrain, etc.) on the spread of wildfires, figure out how to take preemptive/responsive measures to minimize potential losses caused by wildfires, and as a result achieve better management support of wildfires. In preparation for pursuing these goals, the authors used a powerful computing framework, Spark, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO), to study the effects of different weather factors (wind speed, wind direction, air temperature, and relative humidity) on the spread of wildfires. The test results showed that wind is a key factor in determining the spread of wildfires. A stable weather condition (stable wind and air conditions) is beneficial to limit the spread of wildfires. Joint consideration of weather factors and environmental obstacles can help limit the threat of wildfires.

  • PDF