• Title/Summary/Keyword: impact pressure sensor

Search Result 35, Processing Time 0.025 seconds

Experimental Study on the Structural Integrity of Type IV Hydrogen Pressure Vessels Experienced Impact Loadings (충격 하중 조건에서의 Type IV 수소 압력용기 구조건전성 분석)

  • Han, Min-Gu;Jung, Kyung-Chae;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.60-65
    • /
    • 2016
  • In this paper, finite element analysis and real time monitoring experimental work using FBG sensor were carried out for analyzing structural integrity of a Type IV hydrogen pressure vessel under impact loading condition. By using finite element analysis with the ply based modeling technique, sensor insertion points and pressure condition were suggested. Tensile test with an angle ply specimen was conducted for getting the reliability of FBG sensor insertion method. After fabricating the vessel, total five times pressurization fatigue tests were conducted (Non-impact pressurization: 1, After impact pressurization: 4). Experimental results revealed that filling cycle time was gradually increased and filling gradient was decreased when the vessel experienced impact.

Development the Test System of Impact Energy Using the Pressure Variation in Closed Vessel for Hydraulic Breaker (밀폐용기내 압력변화를 이용한 유압식 브레이커의 타격에너지 시험법 개발)

  • Lee, Geun-Ho;Lee, Yong-Beom;Lee, Gi-Yong
    • 연구논문집
    • /
    • s.32
    • /
    • pp.45-53
    • /
    • 2002
  • Hydraulic breaker attached excavator generally used for the destroying and disassembling of buildings, crashing road pavement, breaking rocks at quarry and etc. The developed breaker are determined their own destructive force and number of impact by the input hydraulic flow rate and pressure than the operating conditions, In this study, the characteristics of pressure variation in closed vessel is invested for testing the impact energy of hydraulic breaker. To test the impact energy, the test system is designed as a mechanism consisted with a hydraulic cylinder, main base, pressure sensor, LVDT, data acquisition system and etc.. The developed test system is applied to measure the impact energy for hydraulic breaker. The proposed testing method could be applied for conventional impact test and the control system evaluation for hydraulic breakers.

  • PDF

Non-contact Impact-Echo Based Detection of Damages in Concrete Slabs Using Low Cost Air Pressure Sensors (저비용 음압센서를 이용한 콘크리트 구조물에서의 비접촉 Impact-Echo 기반 손상 탐지)

  • Kim, Jeong-Su;Lee, Chang Joon;Shin, Sung Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • The feasibility of using low cost, unpowered, unshielded dynamic microphones is investigated for cost effective contactless sensing of impact-echo signals in concrete structures. Impact-echo tests on a delaminated concrete slab specimen were conducted and the results were used to assess the damage detection capability of the low cost system. Results showed that the dynamic microphone successfully captured impact-echo signals with a contactless manner and the delaminations in concrete structures were clearly detected as good as expensive high-end air pressure sensor based non-contact impact-echo testing.

A Study of the Optical Fiber Sensor for sensing impact and pressure (광섬유를 이용한 충격 및 압력 센서에 관한 연구)

  • 양승국;조희제;이석정;전중성;오상기;김인수;오영환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2003
  • Optical fiber has many advantages, such as high reliability, long lifetime, immunity to the electromagnetic interference, high speed response and low cost. In this study, we proposed and developed an optical fiber impact and pressure sensor for prevention of accident which occurs in the automatic system or auto door. The principle of the sensor is to detect different optical intensity caused by variation of a speckle pattern due to the external perturbation. Speckle pattern appears at the end of a multimode fiber in which coherent beam propagates. The fabricated sensor in this study was tested. As a result of experiments, amplitude of the output signal isn't linear, but it has sufficient sensitivity for a sensor. Moreover, we can control sensitivity of the sensor by an amplifier at receiver. It has several advantages which are ability of detection at all point on the multimode fiber, large sensitive area, and many application areas for a sensing impact and pressure.

Development of Waterproof Acoustic Sensor for Shockwave Measurement (탄환 충격파 측정용 방수 음향센서 개발)

  • Hur, Shin;Lee, Duck-Gyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.

Linking Clinical Events in Elderly to In-home Monitoring Sensor Data: A Brief Review and a Pilot Study on Predicting Pulse Pressure

  • Popescu, Mihail;Florea, Elena
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.180-199
    • /
    • 2008
  • Technology has had a tremendous impact on our daily lives. Recently, technology and its impact on aging has become an expanding field of inquiry. A major reason for this interest is that the use of technology can help older people who experience deteriorating health to live independently. In this paper we give a brief review of the in-home monitoring technologies for the elderly. In the pilot study, we analyze the possibility of employing the data generated by a continuous, unobtrusive nursing home monitoring system for predicting elevated(abnormal)pulse pressure(PP) in elderly(PP=systolic blood pressure-diastolic blood pressure). Our sensor data capture external information(behavioral) about the resident that is subsequently reflected in the predicted PP. By continuously predicting the possibility of elevated pulse pressure we may alert the nursing staff when some predefined threshold is exceeded. This approach may provide additional blood pressure monitoring for the elderly persons susceptible to blood pressure variations during the time between two nursing visits. We conducted a retrospective pilot study on two residents of the TigerPlace aging in place facility with age over 70, that had blood pressure measured between 100 and 300 times during a period of two years. The pilot study suggested that abnormal pulse pressure can be reasonably well estimated (an area under ROC curve of about 0.75) using apartment bed and motion sensors.

Experimental Study of Water Impact Loads on Symmetric and Asymmetric Wedges (대칭 및 비대칭 2차원 쐐기의 입수 충격에 관한 실험적 연구)

  • Kim, Kyong-Hwan;Lee, Dong Yeop;Hong, Sa Young;Kim, Young-Shik;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 2014
  • In the present study, the water impact loads on two-dimensional symmetric and asymmetric wedges were mainly studied. The impact pressure and force were measured during a vertical drop of the symmetric and asymmetric wedges. The measured pressure was compared with analytic solutions. The measured force at a local area of the wedge was compared with the integrated pressures and analytic solutions. Some findings on symmetric and asymmetrical wedge drops are presented, and the reliability of the force sensor used for the measurement of the local impact force is discussed.

Characteristics of Piezoelectric Sensor for Fluid Impact Pressure (유체 충격 압력 측정용 압전 센서 특징)

  • Choi, Young-Myung;Kim, Hyun-Yi;Park, Jun-Soo;Kwon, Sun-Hong;Kim, Dong-Jean
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.17-22
    • /
    • 2009
  • This study presents an investigation of the characteristics of piezoelectric sensors whose main utilization is to measure impact pressure. The piezoelectric sensors were tested from several points of view. Their characteristics were investigated for repeatability, the effect of the diameter, temperature effect, water purity, flush mounting, and AC and DC coupling. Out of these, it was revealed that the temperature effect is very significant. The characteristics of the AC and DC coupling are also very important in understanding the time history of the impact pressure.

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

A Study on the Calibration Method for Dynamic Shock Sensor Using Hopkinson Pressure Bar System (홉킨슨 압력봉(Hopkinson pressure bar)을 이용한 동적 충격센서 보정기술 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The measurement technique with dynamic shock sensor was widely used in academic experiment for blasting and impact. However, most of dynamic sensors are expensive so that it needs to be protected by external housing structures or damping devices. In this study, the calibration method for dynamic shock sensor under the distortion by external structures. Hopkinson pressure bar system was adopted to measure the input acceleration to the sensor, and it was compared to the acceleration measured by accelerometer with customized damping device. Consequently, it is conclued that this method can be useful to calibrate the dynamic shock sensor under the linear distortion.