• Title/Summary/Keyword: impact load

Search Result 1,580, Processing Time 0.043 seconds

A Study on the Plastic Zone of the Specimen at the Impact of Dynamic Load (동하중 충격시에 시험편의 소성영역에 관한 연구)

  • 한문식;조재웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-144
    • /
    • 2004
  • Dynamic crack initiation in ductile steel is investigated by means of impact loaded 3 point bend(PB) specimens. Results from non-viscoplastic and viscoplastic materials are compared. Their materials are applied with various impact velocities and static strain rates. The specimen has the size 320${\times}$750 mm with a thickness of 10 mm. A modified 3PB specimen design with reduced width at the ends has been developed in order to avoid the initial compressive load of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations are made by using the FEM code ABAQUS. Therefore, their results are plotted by shapes of the von Mises plastic stress and equivalent plastic strain of the specimens applied by various impact velocities.

Benefits of the S/F Cask Impact Limiter Weldment Imperfection

  • Ku, Jeong-Hoe;Lee, Ju-Chan;Kim, Jong-Hun;Park, Seong-Won;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.191-203
    • /
    • 2000
  • This paper describes the beneficial effect of weldment imperfection of the cask impact limiter, by applying intermittent-weld, for impact energy absorbing behavior. From the point of view of energy absorbing efficiency of an energy absorber, it is desirable to reduce the crush load resistance and increase the deformation of the energy absorber within certain limit. This paper presents the test results of intermittent-weldment and the analysis results of cask impacts and the discussions of the improvement of impact mitigating effect by the imperfect-weldment. The rupture of imperfect weldment of an impact limiter improves the energy-absorbing efficiency by reducing the crush load amplitude without loss of total energy absorption. The beneficial effect of weldment imperfection should be considered to the cask impact limiter design.

  • PDF

Impact Analysis Modeling Development for CANFLEX Fuel Bundle

  • H.Y. Kang;H.C. Suk;Lee, J.H.;Kim, T.H.;J.H. Ku;J.S. Jun;C.H. Chung;Park, J.H.;K.S. Sim
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.15-20
    • /
    • 1996
  • The nonlinear dynamic analyses were performed by newly developing an appropriate impact modelling for the evaluation of the CANFLEX fuel bundle structural integrity during the refuelling period. The initial load under the refuelling condition is considered as initial velocity at impact incident, and the impact of one bundle contacted another bundle for at short time is studied by performing several dynamic analysis method. The impact analysis shows to predict an appropriate velocity and acceleration profile according to load time history for two bundles impact.

  • PDF

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method (유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성)

  • Park, Myung-Kyun;Lee, Jung-Won;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The notched Charpy impact test is one of the most prevalent techniques used to characterize the effect of high impulse loads on polymeric materials. In this study, a method of analysis in nylon plastic materials is suggested to evaluate the critical strain energy release rate for variation of notch angles from the Charpy impact energy measurement. Instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture properties and maximum critical load. The dynamic stress intensity factor of nylon plastic material was calculated for the ASTM Charpy specimen from the obtained maximum critical load. Also, the finite element model was developed to figure out the stress distributions for Charpy specimen with different notch angles subject to 3 point bending load which is equivalent to the load applied in the experiment.

  • PDF

A Experimental Study to Understand of a Characteristics of a Piezo-Generator using Impact Energy (충격에너지를 활용한 압전 발전기의 특성을 이해하기 위한 실험 연구)

  • Lee, Jaejun;Moon, Hakyong;Kwon, Sooahn;Ryu, Seungki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.689-695
    • /
    • 2011
  • In this paper, available power generation on the road from renewable energy technologies on how to use the piezoelectric effect has been studied. A lot of vehicles on road that can generate electricity using renewable energy technology as part of the external shock to convert the load into electrical energy using piezoelectric effect piezoelectric generator can be applied to road space. Piezoelectric power harvesting using piezoelectric ceramics for the development of impact load characteristics were tested as function of various experimental design such as generator design and array of piezo-ceramic. To design the piezoelectric generator, the characteristics of piezoelectric ceremic were compared depending on the type of impact load as function of impact load, shock-absorbing.

Application of multi-objective genetic algorithm for waste load allocation in a river basin (오염부하량 할당에 있어서 다목적 유전알고리즘의 적용 방법에 관한 연구)

  • Cho, Jae-Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.713-724
    • /
    • 2013
  • In terms of waste load allocation, inequality of waste load discharge must be considered as well as economic aspects such as minimization of waste load abatement. The inequality of waste load discharge between areas was calculated with Gini coefficient and was included as one of the objective functions of the multi-objective waste load allocation. In the past, multi-objective functions were usually weighted and then transformed into a single objective optimization problem. Recently, however, due to the difficulties of applying weighting factors, multi-objective genetic algorithms (GA) that require only one execution for optimization is being developed. This study analyzes multi-objective waste load allocation using NSGA-II-aJG that applies Pareto-dominance theory and it's adaptation of jumping gene. A sensitivity analysis was conducted for the parameters that have significant influence on the solution of multi-objective GA such as population size, crossover probability, mutation probability, length of chromosome, jumping gene probability. Among the five aforementioned parameters, mutation probability turned out to be the most sensitive parameter towards the objective function of minimization of waste load abatement. Spacing and maximum spread are indexes that show the distribution and range of optimum solution, and these two values were the optimum or near optimal values for the selected parameter values to minimize waste load abatement.

Evaluation of Residual Strength in Aircraft Composite Under Impact Damage (충격손상을 받은 항공기용 복합재료의 잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.94-101
    • /
    • 2010
  • Composite materials have a higher specific strength and modulus than traditional metallic materials. Additionally, these materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. These, however, are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. Impact test was performed using drop weight impact tester. And residual strength behavior by impact was evaluated using the caprino model. Also we evaluated behavior of residual strength by change of mass and size of impactor. Examined change of residual strength by impact energy change through this research and consider impactor diameter in caprino model.

Impact Energy Behavior in Composite Materials of Ankle Foot Orthosis (A.F.O.) (족부보장구(Ankle Foot Orthosis, A.F.O.)용 복합재료의 충격에너지 거동)

  • Kim, Cheol-Woong;Song, Sam-Hong;Oh, Dong-Joon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.330-335
    • /
    • 2004
  • The needs of walking assistive device such as the Ankle Foot Orthosis (A.F.O.) are getting greater than before. However, most of the A.F.O. are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O. which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, $[0/90]_{2S}$) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

  • PDF