• Title/Summary/Keyword: impact element

Search Result 1,498, Processing Time 0.029 seconds

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

Research on Characterizing Urban Color Analysis based on Tourists-Shared Photos and Machine Learning - Focused on Dali City, China - (관광객 공유한 사진 및 머신 러닝을 활용한 도시 색채 특성 분석 연구 - 중국 대리시를 대상으로 -)

  • Yin, Xiaoyan;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.39-50
    • /
    • 2024
  • Color is an essential visual element that has a significant impact on the formation of a city's image and people's perceptions. Quantitative analysis of color in urban environments is a complex process that has been difficult to implement in the past. However, with recent rapid advances in Machine Learning, it has become possible to analyze city colors using photos shared by tourists. This study selected Dali City, a popular tourist destination in China, as a case study. Photos of Dali City shared by tourists were collected, and a method to measure large-scale city colors was explored by combining machine learning techniques. Specifically, the DeepLabv3+ model was first applied to perform a semantic segmentation of tourist sharing photos based on the ADE20k dataset, thereby separating artificial elements in the photos. Next, the K-means clustering algorithm was used to extract colors from the artificial elements in Dali City, and an adjacency matrix was constructed to analyze the correlations between the dominant colors. The research results indicate that the main color of the artificial elements in Dali City has the highest percentage of orange-grey. Furthermore, gray tones are often used in combination with other colors. The results indicated that local ethnic and Buddhist cultures influence the color characteristics of artificial elements in Dali City. This research provides a new method of color analysis, and the results not only help Dali City to shape an urban color image that meets the expectations of tourists but also provide reference materials for future urban color planning in Dali City.

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.

Evaluation on Damage Effect of Concrete Track induced by Underground Structure Displacement Behavior (지하구조물 변위거동에 따른 콘크리트궤도의 손상영향 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.839-844
    • /
    • 2024
  • This study analytically analyzed the impact of underground structure displacement behavior on track damage due to adjacent excavation work, ground deterioration, and changes in groundwater level. The concrete track that was the subject of the study was analyzed for sleeper floating track(STEDEF) and precast concrete slab track(B2S). Sleeper floating track is a track structure in which the concrete bed and sleepers are voided. precast concrete slab track is a track structure that induces the elastic behavior of the rail by assembling rails and fasteners using slabs. For numerical analysis, each concrete track, from rail to concrete bed, was modeled as three-dimensional elements. In addition, the displacement behavior of the underground structure was set as a variable to analyze the damage effect on the concrete bed. Using numerical analysis, the concrete bed stress due to uplift and subsidence was analyzed, and the level of crack effect was analyzed by comparing it to the tensile strength and shear strength. As a result of the analysis, it was found that the sleeper floating track was more vulnerable than the precast concrete slab track when the same uplift and subsidence occurred. In addition, uplift and subsidence, it was analyzed that the cracks range in the sleeper floating track was large.

A study on the Convergence Learning Guidance Method for Adolescents with Disabilities Applying the Eurhythmics Rhythm Element (유아문화예술교육의 학습원리와 교육효과를 적용한 교수학습지도방안 연구)

  • Byun Gi Dam;Nam Sang Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.551-557
    • /
    • 2024
  • Early childhood cultural and artistic education is a process of expressing oneself and understanding society, which has a great impact on the lives of young children. It utilizes the principle of individualization, which means that individual diversity should be considered because each toddler has different developmental characteristics; the principle of play-centeredness, which means that toddlers form active attitudes toward experiential activities through enjoyment through play; the principle of integration, which is the foundation for holistic development; and the principle of direct experience, which means that toddlers have the experience of touching and manipulating materials. In the introduction, children are encouraged to explore and think about materials, read and share books together, and express their thoughts creatively through artistic expressions such as art, music, physical expression, drama, movies, and photography in the first and second phases. In the final stage, a teaching and learning plan was developed that consisted of a circle time for the children to share their opinions with each other in the process of appreciating the results created by the children and presenting their thoughts. As the educational effectiveness of early childhood cultural arts education is best developed in the early childhood period, when learning is emphasized by children exploring according to their interests, this study presented a learning guidance plan that reflects various educational methods and genre convergence education that can be applied to early childhood cultural arts education.

Evaluation method for interoperability of weapon systems applying natural language processing techniques (자연어처리 기법을 적용한 무기체계의 상호운용성 평가방법)

  • Yong-Gyun Kim;Dong-Hyen Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.8-17
    • /
    • 2023
  • The current weapon system is operated as a complex weapon system with various standards and protocols applied, so there is a risk of failure in smooth information exchange during combined and joint operations on the battlefield. The interoperability of weapon systems to carry out precise strikes on key targets through rapid situational judgment between weapon systems is a key element in the conduct of war. Since the Korean military went into service, there has been a need to change the configuration and improve performance of a large number of software and hardware, but there is no verification system for the impact on interoperability, and there are no related test tools and facilities. In addition, during combined and joint training, errors frequently occur during use after arbitrarily changing the detailed operation method and software of the weapon/power support system. Therefore, periodic verification of interoperability between weapon systems is necessary. To solve this problem, rather than having people schedule an evaluation period and conduct the evaluation once, AI should continuously evaluate the interoperability between weapons and power support systems 24 hours a day to advance warfighting capabilities. To solve these problems, To this end, preliminary research was conducted to improve defense interoperability capabilities by applying natural language processing techniques (①Word2Vec model, ②FastText model, ③Swivel model) (using published algorithms and source code). Based on the results of this experiment, we would like to present a methodology (automated evaluation of interoperability requirements evaluation / level measurement through natural language processing model) to implement an automated defense interoperability evaluation tool without relying on humans.

  • PDF

Evaluation of Ecosystem Service for Distribution of Korean fir using InVEST Model (InVEST모델을 이용한 생태계서비스의 가치 평가 - 구상나무 분포지를 대상으로 -)

  • Choi, Jiyoung;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.181-193
    • /
    • 2018
  • The present study was conducted to analyze the quality of the habitats of Abies koreana WILS. by using the InVEST model based on the analytic hierarchy process (AHP) technique and to evaluate the economic value by estimating the carbon fixation. Abies koreana WILS., an original biological species of South Korea, may be an essential element in establishing the national biological sovereignty in the future. The subjects of the present study were the national parks in Mt. Halla, Mt. Jiri, and Mt. Sobaek, which are the habitats of Abies koreana WILS. As suggested by previous studies as a limitation of the InVEST model, the utilization of the data from relevant international publications as the input data, due to the lack of the domestic input data, may decrease the accuracy of the modeling. Therefore, the AHP technique was applied for the input data. The modeling was performed with reference to the years of 1980, 1990, and 2000 for the scenario analysis. The result of the modeling showed that the habitat quality was changed most in the national park in Mt. Halla, as the habitat quality score was decreased from 0.96 in 1980 to 0.97 in 1990 and 0.94 in 2000. In the national part of Mt. Sobeak, the habitat quality was changed most in the sub-alpine zone, as the habitat quality score was decreased from 0.98 in 1980 and 0.98 in 1990 to 0.97 in 2000. The habitat quality was best conserved in the national part in Mt. Jiri, as the habitat quality score was 0.98 in 1980, 0.99 in 1990, and 0.99 in 2000. The estimated economic loss by the change of the habitat quality was 19,280,000 USD for Mt. Halla and 8,030,000 USD for Mt. Sobeak. In the present study, the habitat quality of the Abies koreana WILS, the original species of South Korea, was evaluated and the economic value of the ecological services provided by the habitats was estimated quantitatively. The result showed that the ecosystem service model may be used to qualitatively analyze the quality of a habitat located in a specific region and to estimate the economic value quantitatively. The objective evaluation of ecosystem services demonstrated in the present study may be applied to promote sustainable utilization of natural resources and conservation of the ecosystem by predicting the changes that may be caused by external factors including the development of preservation areas.

Structural Safety Test and Analysis of Type IP-2 Transport Packages with Bolted Lid Type and Thick Steel Plate for Radioactive Waste Drums in a NPP (원자력발전소의 방사성폐기물 드럼 운반을 위한 볼트체결방식의 두꺼운 철판을 이용한 IP-2형 운반용기의 구조 안전성 해석 및 시험)

  • Lee, Sang-Jin;Kim, Dong-hak;Lee, Kyung-Ho;Kim, Jeong-Mook;Seo, Ki-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.199-212
    • /
    • 2007
  • If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or dispersal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions. For the tests we examined the failure of bolts and the deformation of flange to evaluate a loss or dispersal of radioactive material and measured the shielding thickness using a ultrasonic thickness gauge to assess a loss of shielding integrity. The strains and accelerations acquired from tests were compared with those by analyses to verify the impact dynamic analysis. The analytic results were larger than the those of test so that the analysis showed the conservative results. Finally, we evaluated the safety of the type IP-2 transport package under the stacking test condition using a finite element analysis. Under the stacking test condition, the maximum Tresca stress of the shielding material was 1/3 of the yielding stress. Two kinds of a type IP-2 transport package were safe for the free drop test condition and the stacking test condition.

  • PDF

Impact of the Silicate Polymerization on the Formation of Insoluble Aluminium Silicate (수 중 존재하는 실리케이트의 존재형태가 불용성 알루미늄실리케이트 형성에 미치는 영향)

  • Gwon, Eun-Mi;Hong, Seung-Kwan;Kim, Ji-Hyong;Jung, Wook-Jin;Yoo, Myung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.654-661
    • /
    • 2007
  • The goal of this research was to identify the impact of silicate polymerization on the formation of insoluble aluminiumsilicate salts which could be a cause of irreversible fouling in the membrane process by lab-scale test. For this, the amount and characteristics of precipitates that were formed in six samples with different Al and Si concentration were analyzed. And the particles was also observed by SEM-EDS(Scanning Electron Microscope - Electron Dispersion Spectrophotometer) to compare morphology and ratio of Al and Si in each precipitates. Finally the reactive and nonreactive silicate contents in the solution and precipitates were analyzed to calculate silicate form content in each fraction. The amount of precipitates was in proportion to the total concentration of both element in solution. And the amount of insoluble particle that was not dissolved in the acid solution was recorded the highest in the sample 2 of which Si concentration was lower than the saturation concentration, 50 mg/L. The content of reactive silicate in precipitates was also recorded the highest value in sample 2 of which almost silicate form was reactive. When the silicate concentration is same, that value was recorded the highest in the sample with highest Al concentration. The SEM morphology of the precipitates was similar to that of Aluminiumhydroxide and the insoluble precipitates was not dissolved in acidic solution with pH 2.7 was able to observed only in sample 2. The ratio of Al and Si in the precipitates was ranged $0.48\sim3.14$, thai of sample 2 was recorded the highest value, 3.14. It is concluded that the insoluble aluminiumsilicate could be easily formed in the solution of which silicate exist as a reactive form and coexisting Al is sufficient.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF