• Title/Summary/Keyword: impact defect

Search Result 126, Processing Time 0.029 seconds

A Study on Design of Dry Floor Tile Unit Method System (바닥타일 건식공법용 수지매트 개발에 관한 연구)

  • 김상미;조상영;김성식;임남기;정병훈;김무성
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.22-27
    • /
    • 2001
  • The purpose of this study is development of dry floor tile method that practically used for improving wet method's defect, with resin mat design. PE resin used mat which satisfied with bonding test, waterproof test, resistance to chemical attack test, resistance to impact test and freezing and thawing test is confirmed the basic property.

  • PDF

A Closer Look at the Effect of Particle Shape on Machined Surface at Abrasive Machining (입자연마가공에서의 입자 형상의 영향에 대한 고찰)

  • Kim, Dong-Geun;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.219-223
    • /
    • 2010
  • Despite the increasing need of nanometer-scale accuracy in abrasive machining using ultrasmall particles such as abrasive jet and chemical mechanical polishing(CMP), the process mechanism is still unknown. Based on the background, research on the effects of various process parameters on the machined surface at abrasive machining was motivated and performed by using finite element analysis where the effect of slurry fluid flow involved. The effect of particle shape on the machined surface during particle-surface collision was discussed in this paper. The results from FEA simulation revealed that any damage or defect generation on machined surface by the impact may occur only if the particle has enough impact energy. Therefore, it could be concluded that generation of the defects and damage on the wafer surface after CMP process was mainly due to direct contact of the 3 bodies, i.e., pad-particle-wafer.

강 의 마찰용접 에 미치는 탄소당량 의 영향 - 동종강 에 대하여

  • 나석주;김성도
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • In this study, the influence of carbon equivalents on friction welds of similar steels was investigated. Four types of steels with 15mm diameter tested in the wide range of carbon equivalents from 0.3 to 1.1 Main experimental results are summarized as follows : (1) Under the constant burn-off length, the friction time becomes longer with the increasing carbon equivalent, but the upset length shows no consistent tendencies. (2) Due to the recrystallization in the contact area, the maximum hardness occurs some away from the contact surface. And it increases almost linearly with the increasing carbon equivalent. (3) Even a steel with 1.1 C.E. can be friction welded to make defect-free welds. (4) With the increasing carbon equivalent, the bend angle and charpy impact value decrease very rapidly in the range from 0.3 C. E., but remain nearly unchanged for C. E. higher than 0.6. (5) Heat treatment of the base metals before welding has very little influence on the mechanical properties of welds. On the other hand, normalizing of the welds improves the bend angle and charpy impact value, but its effect becomes almost negligible, when the carbon equivalents are higher than 0.6.

  • PDF

A Study on the Detection of Defects from Parallel Cylindrical Objects Using Spectral Analysis of Acoustic Impact Signal (타격음 주파수 분석법에 의한 원통 병렬 구조물의 파손 여부 식별에 관한 연구)

  • Bang, Ho-Gyun;Jo, Cheol-U
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.12-20
    • /
    • 1995
  • This paper describes principles and experimental results in conjunction with examining the possibility of the detection of effects from a cylindrical objects. Cylindrical objects have its own resonance frequency. The frequency varies according to the diameter, length etc. And acoustic sound, whose frequency and the harmonic components corresponding to resonance frequency, is radiated from the object. When an object have defect in itself, the radiated acoustic sound is different from normal one. So we can detect its defect by analysing frequency components of acoustic sound. We proved that detection of defective objects by acoustic signal analysis is possible automatically. Also the result can be applied to other kinds of objects.

  • PDF

Study on the simulation of contamination route and estimation of the pollution sources of DNOC using a numerical model (수치모형을 이용한 DNOC의 물질 거동 모의와 오염원 추정 연구)

  • Park, Kyeong-Deok;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • To estimate pollution sources in the watershed with various industries, the simulation of contamination route and distribution of 2-methyl-4,6-dinitriophenol(DNOC) were performed with a numerical model Hydro Geo Sphere. This study was performed calculations of the load using the measured concentration and simulated flow rate. And, the river was divided by the sampling sites at the mainstream, and the contribution rate at downstream sampling sites was calculated for each section. The results showed the concentration of the downstream sampling sites were decided by the concentration of upstream sites, and the contribution rates of the tributaries were calculated below 10%. The results also showed that the impact of the potential sources in Section 1(Geumho1 ~ Geumho2) and Section 5(Geumho5 ~ Geumho6) was larger than in the other area. In Section1 and Section5, It seemed to require detailed investigation.

A Study on the Jetting Phenomena in Injection Molding Process (사출성형 공정에서 젯팅 현상에 관한 고찰)

  • Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.125-131
    • /
    • 2002
  • Surface defects in injection molded parts are due to the unsteady flow of polymer melt which are related to the geometries of cavity and gate, the operational conditions of injection and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for three kinds of PCs which have different molecular weight and structure, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to die swell. This means that the jetting is strongly affected by the elastic property rather than the viscous property in viscoelastic characteristics of molten polymer. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mold design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and associated surface defects regardless of magnitude of elastic property. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

Structural Analysis of High-Density Mobile Micro-Connector (초소형 고집적 모바일 커넥터부품 구조해석)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, as small-sized display products such as mobile phones and digital cameras have become lighter and smaller, the size of electric signal delivery part, connector for the mobile display products, also, needs to become smaller, so high-density integration like shortening the distance between signal delivery media, conductors is necessary. With the micro and high-density integration of the connector, it is necessary to maintain contact to a certain degree for keeping intensity and delivering electric signal smoothly to prevent a defect with a specific impact. Accordingly, this study carried out a structural analysis according to the operating mechanisms of 0.16CHP Class Bottom Contact FPC Connector and 0.24CHP Class BTB Connector mostly used in small-sized mobile display products such as mobile phones and digital cameras. As a result of the analysis, both connectors had lower than 997MPa, yield strength of connector material C5240-XSH, so it is judged that permanent plastic deformation would not occur, and that a contact force between the connector and FPC film occurs to a certain degree, so that there would not be any defect in electric signal delivery.

  • PDF

Free tissue transfer for reconstruction of axillary defects: two case reports

  • Asha Deepthi Bathini;Parvathi Ravula;Srinivas Jammula;Srikanth Rangachari;Priyanka Pereira
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.425-430
    • /
    • 2023
  • Axillary defects need pliable, vascular tissue to cover the critical structures traversing the axilla and to allow near-normal range of motion in the shoulder. Although local flaps are the first choice, free tissue transfer is a good option when local tissues are injured or scarred. Herein, we report two cases of axillary defects that were reconstructed using anterolateral thigh free flaps. One was a post-electric burn axillary defect for which a thoracoacromial pedicle was used as the recipient, and the other was a posttraumatic axillary defect with the transverse cervical vessels as the recipient. In both patients, the flap survived well with no complications and resulted in adequate functional recovery. In large defects of the axilla with a scarcity of local tissues, free flaps can yield optimal results. The proper selection of recipient vessels and a donor flap with adequate pedicle length impact the outcomes of such reconstruction.

Analysis of Impact Behavior of Al-Alloy Castings Considering Internal Defects (내부 결함을 포함한 주조 알루미늄 합금의 충격 거동 해석)

  • Jo, Seong-Woo;Kwak, Si-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1599-1604
    • /
    • 2012
  • In general, internal defects, such as shrinkage in casting, cause stress concentration and can be a starting point for cracks. Therefore, it is important to understand the effects of internal defects on the mechanical properties including the impact behavior. This study aim is to evaluate the effects of internal casting defects on the impact performance of Al-alloy castings. Both an experimental method and computational analysis were used to achieve the research objective. The internal defects in the casting were scanned using an industrial CT scanner, and their shape was simplified using ellipsoidal primitives for impact analysis. The good agreement between the experimental and computer simulation results verified the reliability of the proposed computational method for the FEA of casting components with internal defects.

The Impact Properties and Wear Resistance of Polybutylene terephthalate (PBT) Cross-linked by Electron Beam Irradiation (전자선 가교된 PBT의 충격 특성 및 내마모 특성 연구)

  • Shin, Bum Sik;Ko, Keum Jin;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • Poly(butylenes terephthalate) have made large strides in applications of injection, extrusion, and molding material due to their excellent thermal resistance and appropriate mechanical properties. However, PBT was not hard polymer but a soft polymer which caused low absorption of external energy and the defect of being easily broken with the strong impact. Thus, the electron beam irradiation was carried out over a range of irradiation doses from 100 to 1,000 kGy for enhancing the properties. The decreases of $T_m$, $T_c$, and enthalpy were observed as increasing the absorbed dose in the results of DSC analysis. The improvement in the impact strength of PBT was clearly observed as the absorbed dose was increased. This was probably due to the 3-dimensional network structures, resulting in increasing the absorption of impact energy. In addition, the wear properties had increased at higher than 300 kGy. The negative deviation of weight loss confirmed the improvement of the wear properties of PBT, as evidenced by SEM observation on the wear surfaces.