• Title/Summary/Keyword: impact damage behavior

Search Result 207, Processing Time 0.022 seconds

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.

Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation- (세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향-)

  • 신형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

Drop-weight impact damage evaluation for carbon fiber/epoxy composite laminates (탄소 섬유강화 복합재료의 중력 낙하 충격으로 인한 손상 평가)

  • Sohn, Min-Seok;Hu, Xiao-Xhi;Ki, Jang-Kyo;Hong, Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.89-92
    • /
    • 2001
  • Drop weight impact tests were performed to investigate the impact behavior of carbon fiber/epoxy composite laminates reinforced by short fibers and other interleaving materials. Characterization techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates. Scanning electron microscopy was used to observe impact damage and fracture modes on specimen fracture surfaces. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking and fiber breakage depending on the interlayer materials. Among the composite laminates tested in this study, the composites reinforced by Zylon fibers showed very good impact damage resistance with medium level of damage, while the composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is expected to deteriorate the bulk strength due to the reduction of fiber volume fraction, even though the damaged area is significantly reduced.

  • PDF

Finite Element Analysis and Experimental Study About Damage Behavior of Glass by Oblique Impact of Steel Ball (강구 경사충돌에 의한 유리의 손상 거동에 대한 실험적 연구 및 유한요소 해석)

  • Seo, Chang-Min;Kim, Seong-Ho;Kim, Dong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.899-905
    • /
    • 2001
  • The damage behavior of soda-lime glass was studied due to a steel ball of 1mm and 2mm at oblique impact test. The thickness of glass specimen were 3mm and 5mm and oblique degrees of impact were 90$^{\circ}$,70$^{\circ}$ and 50$^{\circ}$. After the steel ball impact test, the crack patterns were investigated using a stereo-microscope. In addition, the finite element method was performed to analyze the stresses distribution and variation in the oblique impacted glass by steel ball. As a result of the impact test, the crack length of 90$^{\circ}$impacted glass was the largest and that of 50$^{\circ}$impacted glass was the smallest. In particular, as the impact velocity and diameter of the steel ball increased, the difference of crack length was prominent. The finite element analysis showed the maximum principle stresses distribution in contact area of glass specimen. The result of analysis was accorded with the crack growth behavior by the oblique impact test.

Impact Damage on Brittle Materials with Small Spheres (I) (취성재료의 소구충돌에 의한 충격손상 (I))

  • U, Su-Chang;Kim, Mun-Saeng;Sin, Hyeong-Seop;Lee, Hyeon-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.93-100
    • /
    • 2001
  • Brittle materials are very weak for impact because of typical characteristics which happen to be easily fractured with low fracture toughness and crack sensitivity. When brittle materials are subjected to impact due to small spheres, high contact pressure is occurred to impact surface and then local damage on specimen is developed, since there are little plastic deformations due to contact pressure compared to metals. This local damage is a dangerous factor which gives rise to final fracture of structures. In this research, the crack propagation process of soda lime glass by impact of small sphere is explained and the effects of the constraint conditions of impact spheres and materials for the material damage were studied by using soda-lime glass. that is the effects for the materials and sizes of impact ball, thickness of specimen and residual strength. Especially, this research has focused on the damage behavior of ring crack, cone crack and several kinds of cracks.

  • PDF

Study on the Behavior and Damage of Pedestrian at Car Body Impact (차체 충돌에 있어서의 보행자의 거동 및 손상에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.157-161
    • /
    • 2011
  • The study for traffic safety improvement is so necessary to minimize the wound of pedestrian at car impact as to prevent pedestrian from this accident. This study aims at analyzing the behavior affected by impact on which car body hits pedestrian. Load and damage of pedestrian are also investigated. This model is the small car body as frame structure. The pedestrian is modeled with dummy by CATIA as Korean standard body style. The ear impacts the side of pedestrian with the speed from 30 to 90km/h. Behavior and damage of pedestrian at impact are analyzed by ANSYS. In case of 30km/h, The maximum pressure of dummy becomes the maximum value of 100MPa after the elapsed time of 0.1second and then seems to remain at 105MPa constantly. In case of 60km/h, its pressure becomes the maximum value of 110MPa at the elapsed time of 0.05second and decreases at 90MPa until the elapsed time of 0.1second. This value fluctuates after the elapsed time of 0.1second. In case of 90km/h, its maximum pressure becomes the maximum value of 155MPa at the elapsed time of 0.07second and fluctuates after the elapsed time of 0.07second until O.3second. This value seems to remain at 100MPa constantly after 0.3second until 0.5second. But this pressure increases suddenly just after 0.5second. Maximum deformations of dummy increase linearly according to elapsed time at hitting velocities of 30, 60 and 90km/h.

Loading Rate Effects During Static Indentation and Impact on Silicon Carbide with Small Sphere (탄화규소에 구형입자의 정적압입 및 충격시 부하속도의 영향)

  • Shin, Hyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3847-3855
    • /
    • 1996
  • In order to study the relationship between static and cynamic behaviors of silion caride, both quasi-static indentaiton and impact experiments of spherical particle have been conducted. The difference inmaterial behavior when using the two mehtods suggests a loading rate difference in the damate pattrern and fracture strength of silicon carbide. This investigation showed some difference in damage pattern according to particla property, especially inthe case of particle impact. There was no differences in deformation behaviors according to the loading rate when the crater profiles were compared with each other at the same contact radius. From the result of residual strength evaluation, it was found that the strength degradation began at the initiation of ring crack and its behavior was colsely related to morphologies of the damage developed which was also dependent upon the extent of deformation atthe loaidng point. In the case of static indentation, there didnot exist the particle property effects onthe strength degradation behavior.

A Damage Analysis of Glass/phenol Laminated Composite Subjected to Low Velocity Impact (저속 충격을 받는 Glass/phenol 복합적층재의 손상 해석)

  • 나재연;이영신;김재훈;조정미;박병준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.89-92
    • /
    • 2002
  • Traditionally unidirectional laminated composite which are characterized by high specific stiffness and strength were used for structural application. But theses composites are highly susceptible to impact damage because of lower transverse tensile strength. The main failure modes of laminated composite are fiber breakage, matrix cracking and delamination for low velocity impact. The modified failure criterions are implemented to predict these failure modes with finite element analysis. Failure behavior of the woven fabric laminated composite which is used in forehead part of subway to lighten weigh has been studied. The new failure criterions are in good agreement with experimental results and can predict the failure behavior of the woven fabric composite plate subjected to low velocity impact more accurately.

  • PDF