• Title/Summary/Keyword: impact damage

Search Result 1,612, Processing Time 0.033 seconds

The Continuity of Operation (COOP) Application to a Local Government for Disaster Risk Reduction

  • Jang, Young-Jin;Wang, Won-joon;Jung, Jae-Wook;Seo, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.157-166
    • /
    • 2019
  • Globally, various disasters such as typhoons, floods, earthquakes, fires, explosions have caused work to be halted. If there is a large-scale disaster at public institutions in charge of major national affairs and their works are interrupted, not only will there be property damage, but there will also lead to a decline in national credibility and direct and indirect impacts on the people. Therefore, it is necessary to ensure continuity of operation by minimizing the interruption period of critical operations due to disasters. Overseas advanced countries such as the United States and Japan developed guidelines for Continuity of Operation (COOP) to prevent unexpected work disruptions caused by disasters. Recognizing the necessity of COOP in South Korea, a relevant law has been newly established in 「the Framework Act on the Management of Disasters and Safety」 to enable public institutions to establish the COOP in response to this situation. In this study, the definition, the necessity and overseas cases of COOP were investigated and described. Using the templates developed by these results, operational impact analysis, risk assessment, operational continuity strategies and operational continuity procedures were applied to "A" City Hall in Gyeonggi-do province and those results were described. The objective of this study is to substantially contribute to the introduction of COOP to local governments through their pilot application and implications of COOP.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Case Study on the Hazard Susceptibility Prediction of Debris Flows using Surface Water Concentration Analysis and the Distinct Element Method (수계 집중도 분석 및 개별요소법을 이용한 토석류 위험도 예측 사례 연구)

  • Lee, Jong-Hyun;Kim, Seung-Hyun;Ryu, Sang-Hoon;Koo, Ho-Bon;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Various studies regarding the prediction of landslides are underway internationally. Research into disaster prevention with regard to debris flows is a particular focus of research because this type of landslide can cause enormous damage over a short period. The objective of this study is to determine the hazard susceptibility of debris flow via predictions of surface water concentrations based on the concept that a debris flow is similar to a surface water flow, as it is influenced by mountain topography. This study considered urban areas affected by large debris flows or landslides. Digital mapping (including the slope and upslope contributing areas) and the wetness index were used to determine the relevant topographic factors and the hydrology of the area. We determined the hazard susceptibility of debris flow by predicting the surface water concentration based on the topography of the surrounding mountainous terrain. Results obtained using the distinct element method were used to derive a correlation equation between the weight and the impact force of the debris flow. We consider that in using a correlation equation, this method could assist in the effective installation of debris-flow-prevention structures.

Analysis of Counting Rate according to Presence or Absence of Detector's Protector in Beta-rays Measurement using Geiger-Muller Counter (Geiger-Muller 계수관을 이용한 베타선측정에서 디텍터 보호유무에 따른 계수율 분석)

  • Jang, Ji-Yong;Jeong, Moon-Taeg;Song, Jong-Nam;Ha, Jae-Jun;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • In the surface contamination test using the end-window Geiger-Muller type counter, the wrap is used as a method for protecting the detector exposed to the outside in order to measure the beta-rays. We analyze the effect of this method on the measurement rate and the correction factor, and wanted to make it clear to radiation workers that excessive use of the wrap can affect the measured value of the beta-rays. The experimental method was to compare and analyze the change of the beta-rays measurement counting rate and the calibration factor according to the wrap thickness using the beta-rays with different energy of 3 KBq, 1.5 KBq and 0.3 KBq. The subjects of this study were the end-window Geiger-Muller type counter which were held at the calibration center certified by Korea Laboratory Accreditation Scheme (KOLAS) in March 2012, Cl-36 (Chlorine) and Sr-90 (Strontium) were used as the source of beta radiation. The measurement counting rate decreased with increasing wrap thickness, and the calibration factor increased with increasing wrap thickness. Since the changes of the measurement counting rate and the calibration factors can reduce the accuracy of the instrument readings, but also have a significant impact on detector contamination and damage, so there is a need to find out what thickness of wrap is most effective. If we using a wraps with thickness that show a low rate of change of the measurement counting rate and the calibration factor, it will protect the detector and minimize the effect on the measured value of the beta-rays.

The Impact of Safety Accident on Teacher's Educational Activities in Elementary School (초등학교 안전사고가 초등교사의 교육활동에 미치는 영향)

  • Yang, Jeong-Mo;Park, Young-Soo
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.1 no.2
    • /
    • pp.105-125
    • /
    • 2000
  • The purpose of this study was to examine the influence of school safety accident on teacher's normal educational activities and to seek some desirable ways to cope with it. The subjects in this study were 351 class teachers randomly selected from Seoul and Kyonggi Province and surveyed from April through July, 2000. The conclusions were as follows; 1. Actual Condition of School Safety Accident 1) Approximately many teachers investigated had had an experience to suffer safety accident. Safety accident occurred most during break or class, but there was a significant difference according to service area. 2) Safety accident took place most in playground, and the most common cause was student's own carelessness, and the most widely occurred accident type was an injury. But there was no significant difference caused by the general characteristics of the teachers. 2. Influence of Safety Accident On Teacher's Educational Activities. 1) The largest reason they offered safety education was to ensure student safety. The greatest number of them had an opinion they would consider changing or giving up a planned normal educational activity if they recognized any possibilities of safety accident. There was a significant difference in this point according to gender and career. 2) They worried about possible safety accident most during field study, but there was a significant difference according to gender or presence or absence of safety accident experience. 3) The general characteristics of teacher produced a significant difference to an experience of avoiding educational activity due to psychological withdrawal, but safety accident experience didn't make any difference. 3. Minimization of Teacher Damage or Loss from Safety Accident. 1) The dominant opinion about teacher's small mistake for any occurrence of safety accident was that the responsibility should be escaped to maintain teacher's authority. For severe mistake, however, there were two different opinions at the same percentage: one was being exempted and the other was taking civil liability. 2) Establishing teacher insurance was preferred as a way to minimize teacher's economic loss from safety accident, but there was a significant difference according to gender. 3) The dominant opinion about the payment of insurance premium for safety accident was that it should be paid from school operating expenses.

  • PDF

Impacts of Climate Change on Phonology and Growth of Crops: In the Case of Naju (기후변화가 농업생태에 미치는 영향 - 나주지역을 사례로 -)

  • Lee, Seung-Ho;Heo, In-Hye;Lee, Kyoung-Mi;Kim, Sun-Young;Lee, Yoon-Sun;Kwon, Won-Tae
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.1
    • /
    • pp.20-35
    • /
    • 2008
  • This study used crop data from statistics yearbooks in Naju and climate data from Gwangju weather station to investigate whether climate changes have had significant impact on crops. The sample crops are rice, barley, pear, radish, Korean cabbage and red pepper. The results showed that the changes in temperature have shifted crop phonology and affected crop growth. The rice and barley heading date were advancing and had negative correlation with average temperature over 30days before average heading date. The number of rice grains per unit area $(m^2)$ were decreasing while the number of barley grains per unit area $(m^2)$ were increasing because average temperature during grain filling period of rice (barley) was increasing (decreasing). Therefore, decreasing (increasing) yields of rice (barley) can be predicted by global warming. The sprouting, flowering and full flowering date of pear were advancing. The sprouting date of pear had negative correlation with average temperature from February to March and the flowering and full flowering date of pear had negative correlation with average temperature from February to April. The brix and weight of pear were increased and were most sensitive to August and September average temperature. An earlier blossom of pear trees holds the danger of damage by late frosts. The plant length of radish and chinese cabbage were decreasing and negatively influenced by maximum temperature on September. The fruit set numbers of red pepper were increasing recently and had positive correlation with minimum temperature on August. The growth of radish and Korean cabbage will be poor, but the growth of red pepper will be good by rising temperature.

A study on the mechanical performance of impregnated polymer foam in cargo leakage of LNG carrier (LNG운반선의 화물 누출 시 함침된 고분자 폼의 기계적 성능에 관한 연구)

  • Park, Gi-Beom;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this study, the effect of cryogenic liquefied natural gas leakage and loading on liquefied natural gas cargo hold is investigated to observe the performance of the polymer foam material that comprises the cryogenic insulation of the cargo hold. The primary barriers of liquefied natural gas carrier that are in contact with the liquefied natural gas will leak if damage is accumulated, owing to fluid impact loads or liquefied natural gas loading / unloading over a long period. The leakage of the cryogenic fluid affects the interior of the polymer foam, which is a porous closed cell structure, and causes a change in behavior with respect to the working load. In this study, mechanical properties of polyisocyanurate foam specimen, which is a polymer material used as insulation, are evaluated. The performance of the specimens, owing to the cold brittleness and the impregnation effects of the cryogenic fluids, are quantitatively compared and analyzed.

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

Characteristics of Tropical Cyclones over the Western North Pacific in 2008 (2008년 태풍 특징)

  • Cha, Eun-Jeong;Hwang, Ho-Seong;Yang, Kyung-Jo;Won, Seong-Hee;Ko, Seong-Won;Kim, Dong-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.183-198
    • /
    • 2009
  • The purpose of this study is to summarize the tropical cyclone (TC) activity of 2008 over the western North Pacific including the verification of the official track and intensity forecast errors of these TCs. The TC activity - frequency, Normalized Typhoon Activity (NTA), and life span - was lower than 58-year (1951-2008) average. 22 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2008. The total number is less than 58-year average frequency of 26.4. Out of 22 tropical cyclones, 11 TCs reached typhoon (TY) intensity, while the rest 11 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - six STS and five TS storms. One typhoon KALMAEGI (0807) among them affected the Korea peninsula. However, no significant impact - casualty or property damage - was reported. On average of 22 TCs in 2008, the Korea Meteorological Administration (KMA) official track forecast error for 48 hours was 229 km. There was a big challenge for individual cyclones such as 0806 FENGSHEN and 0817 HIGOS presenting significant forecast error, with both intricate tracks and irregular moving speed. The tropical cyclone season in 2008 began in April with the formation of NEOGURI (0801). In May, four TCs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to August. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2008 summertime. The 2008 TC activity has continued the below normal state since mid 1990s which is apparent the decadal variability in TC activity.