• Title/Summary/Keyword: impact acceleration

Search Result 459, Processing Time 0.026 seconds

Vibration Mode Measurement Test of External Fuel Tank for Aircraft (항공기용 외부연료탱크 진동모드 측정시험)

  • Kim, Hyun-gi;Choi, Hyun Kyung;Kim, Sungchan;Park, Hyung Bae;An, Su Hong;Kim, Young Shin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.88-94
    • /
    • 2022
  • The vibration mode measurement test measures the natural vibration characteristics of the target specimen. The measured natural mode characteristics are compared with the numerical analysis result to verify the reliability of the numerical analysis. If necessary, it is used to supplement the numerical analysis model of the specimen used for the dynamic characteristic analysis. In this paper, the natural frequency and natural mode of the external fuel tank are respectively obtained through the vibration mode measurement test and the numerical analysis, using the finite element model. The results are compared to verify the reliability of the numerical analysis model of the external fuel tank to apply to the entire aircraft model. To measure the vibration mode of the test specimen, a bungee cord was used, to simulate the free boundary condition for the test specimen. And, 3-axis accelerometers were installed on the test specimen. The response characteristics of the test specimen were measured, by excitation with an impact hammer. As a result of the test, after performing the frequency response analysis on the response acceleration, the natural frequency of the test specimen and its vibration mode were confirmed. The reliability of the numerical analysis model was verified by comparing the frequency and vibration mode, obtained through the test and the numerical analysis.

A Study to Evaluate the Impact of In-Vehicle Warning Information on Driving Behavior Using C-ITS Based PVD (C-ITS 기반 PVD를 활용한 차량 내 경고정보의 운전자 주행행태 영향 분석)

  • Kim, Tagyoung;Kim, Ho Seon;Kang, Kyeong-Pyo;Kim, Seoung Bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.28-41
    • /
    • 2022
  • A road system with CV(Connected Vehicle)s, which is often referred to as a cooperative intelligent transportation system (C-ITS), provides various road information to drivers using an in-vehicle warning system. Road environments with CVs induce drivers to reduce their speed or change lanes to avoid potential risks downstream. Such avoidance maneuvers can be considered to improve driving behaviors from a traffic safety point of view. Thus, empirically evaluating how a given in-vehicle warning information affects driving behaviors, and monitoring of the correlation between them are essential tasks for traffic operators. To quantitatively evaluate the effect of in-vehicle warning information, this study develops a method to calculate compliance rate of drivers where two groups of speed profile before and after road information is provided are compared. In addition, conventional indexes (e.g., jerk and acceleration noise) to measure comfort of passengers are examined. Empirical tests are conducted by using PVD (Probe Vehicle Data) and DTG (Digital Tacho Graph) data to verify the individual effects of warning information based on C-ITS constructed in Seoul metropolitan area in South Korea. The results in this study shows that drivers tend to decelerate their speed as a response to the in-vehicle warning information. Meanwhile, the in-vehicle warning information helps drivers to improve the safety and comport of passengers.

Study on Power Distribution Algorithm in terms of Fuel Equivalent (등가 연료 관점에서의 동력 분배 알고리즘에 대한 연구)

  • Kim, Gyoungeun;Kim, Byeongwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.6
    • /
    • pp.583-591
    • /
    • 2015
  • In order to evaluate the performance of TAS applied to the hybrid vehicle of the soft belt driven, acceleration performance and fuel consumption performance is to be superior to the existing vehicle. The key components of belt driven TAS(Torque Assist System), such as the engine, the motor and the battery, The key components of the driven belt TAS, such as the engine, the motor, and the battery, have a significant impact on fuel consumption performance of the vehicle. Therefore, in order to improve the efficiency at the point of view based on the overall system, the study of the power distribution algorithm for controlling the main source powers is necessary. In this paper, we propose the power distribution algorithm, applied the homogeneous analysis method in terms of fuel equivalent, for minimizing the fuel consumption. We have confirmed that the proposed algorithm is contribute to improving the fuel consumption performance satisfied the constraints considering the vehicle status information and the required power through the control parameters to minimize the fuel consumption of the engine. The optimization process of the proposed driving strategy can reduce the trial and error in the research and development process and monitor the characteristics of the control parameter quickly and accurately. Therefore, it can be utilized as a way to derive the operational strategy to minimize the fuel consumption.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

A Study on the Comparative Analysis of Seismic Waves and Blast Vibration Measurements by Distance from the Earthquake Epicenter (지진 진앙지에서 지진 진동의 거리별 실측치와 발파 진동과의 비교분석에 관한 연구)

  • Seunghoon Lee;Youngcheol Shin;Donghyun Kang;Daekyu Lim;Gimook Kim;Dongyeon Kim;Jinok Lee;Chunsik Lee
    • Explosives and Blasting
    • /
    • v.42 no.3
    • /
    • pp.23-37
    • /
    • 2024
  • Recently, earthquakes occurring in Korea have frequently caused damage to buildings and structures. However, since it is impossible to predict when an earthquake will occur, it is challenging to determine the characteristics of the vibrations without pre-installed automated measuring devices. Fortunately, automated measuring devices have been installed at six blasting sites, allowing for the comparison of the characteristics of seismic and blasting vibrations. On June 12, 2024 (Wednesday) at 8:26 AM, a magnitude 4.8 earthquake occurred 4 km south-southwest of Buan-gun, Jeollabuk-do. This study compares the characteristics of seismic vibrations from this earthquake with the measured values of seismic and blasting vibrations at domestic blasting sites. Additionally, we examined the causes and scales of damage from the earthquake, and analyzed the characteristic values obtained from automated measuring devices installed in various regions from the epicenter to determine the degree of attenuation. This study aims to provide a basis for comparing the impact of vibrations from blasting on protected objects and to help preemptively address complaints that may arise from such vibrations in the future.

Analysis of Vibration Characteristics Changes in a Single-Span Bridge Due to Temperature Using Continuous Measurement Data (상시 계측 데이터를 이용한 단경간 교량의 온도에 따른 진동 특성 변화 분석)

  • Tae-Ho Kwon;Byeong-Cheol Kim;Ki-Tae Park;Chi-Ho Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.62-68
    • /
    • 2024
  • The Republic of Korea experiences four distinct seasons, with significant temperature differences between summer and winter, causing bridges to undergo large temperature variations throughout the year. When the temperature changes, the dynamic characteristics of bridge structures also change. However, during load-bearing capacity assessments in domestic bridge maintenance, this temperature effect is not considered, and only the natural frequency measured over a short period is used for evaluation. In this paper, we theoretically analyze the impact of changes in natural frequency on bridges and extract daily estimated natural frequency data from bridges with continuous vertical acceleration measurements taken over more than a year to confirm temperature-induced changes. The results show that a 1% decrease in natural frequency corresponds to an approximately 2% decrease in the load-bearing capacity of the bridge. Additionally, it was found from the measurement data that a 10℃ increase in temperature did not affect the natural frequency of RC slab bridges and Rahmen bridges, but in PSC-I girder bridges and steel box girder bridges, the natural frequency decreased by approximately 1.04% to 2.48%.

A Process-based Relative Sea-level Budget Along the Coast of Korean Peninsula Over 1993-2018 (1993-2018년 한반도 연안 상대해수면 수지 분석)

  • Hyeonsoo Cha;Seongbae Jo;Jae-Hong Moon
    • Ocean and Polar Research
    • /
    • v.46 no.1
    • /
    • pp.31-42
    • /
    • 2024
  • Due to physical processes varying in space and time, regional sea-level rise (SLR) significantly deviates from the global mean. Thus, understanding and quantifying the contribution of each process to regional sea-level change is crucial to prevent low-lying inundation in preparation for future ocean conditions. In this study, we assessed to what degree sterodynamic (SD) effects (i.e., density-driven steric expansion and mass redistribution due to ocean circulation), contemporary mass redistribution (CMR), and glacial isostatic adjustment (GIA) contribute relative sea-level rise around the Korean coast from 1993 to 2018, with independent observations and reanalysis datasets. The assessment showed that the tide gauge-observed SLR trend can be explained by the sum of each component at 16 of 19 locations. The major contributors to relative SLR are SD effects of 2.03±0.27 mm/yr and CMR components of 1.31±0.05 mm/yr, while GIA drives sea-level decreasing of -0.27±0.15 mm/yr on the Korean coast. It was also found that the spatial deviations of SLR are primarily caused by the SD effects. In addition, the evaluation of vertical land motion (VLM) based on altimetry and tide gauge indicates that most tide gauge locations have experienced uplift during at least altimetry period, whereas Wido station has experienced particularly high rate of subsidence that contributed to the SLR acceleration. Further examination of the impact of earth deformation due to CMR, GIA, and local process on the VLM trends demonstrated that the GIA and CMR contribute to land uplift with the average of 0.35±0.15 mm/yr and 0.17±0.05 mm/yr, respectively. On the other hand, the local processes like groundwater depletion and sediment compaction showed a wide range of variability, from -1.61 to 0.58 mm/yr, indicating a significant contribution to regional differences in vertical land motion.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Thailand in 2016: The Death of King Bhumibol Adulyadej and the Uncertainty in Political Economy (태국 2016: 푸미폰 국왕의 서거와 정치·경제적 불확실성)

  • KIM, Hong Koo;LEE, Mi Ji
    • The Southeast Asian review
    • /
    • v.27 no.2
    • /
    • pp.245-271
    • /
    • 2017
  • The purpose of this study is to examine and assess the major characteristics and changes of politics, economy, and diplomacy in Thailand in 2016. Specifically, it reviewed the New Constitution that was passed in 2016, the confrontation between different political forces and the trend of military regime around the New Constitution, and the political instability caused by the accession of the new king to the throne. This study also set out to figure out changes to the economy and foreign relations of the country, including its relations with South Korea, under the military regime and make predictions for the impact and future prospects of King Bhumibol Adulyadej's death on the politics and economy of the country. In 2016, the politics of Thailand took a step further toward the transfer of power to civil government and established a foundation for an authoritarian system. The draft of the New Constitution, which does not seem to be democratic, was approved by a referendum and enabled the military authorities to continue their political interventions, even after the general election. The New Constitution, in particular, reduces the power of political parties itself in addition to simply keeping the Thaksin's party in check; thus, anticipating ongoing conflicts between the military authorities and political parties. In this situation, the absence of King Bhumibol Adulyadej, who used to play a decisive role in promoting the political stability of the country, and the accession of the new king to the throne raise concerns about the acceleration of political instability, which has continued after the coup and influenced the diplomatic relations of the country. Today, Thailand is distancing itself from Western nations that do not recognize the current military regime including the U.S.A. and EU member states and instead maintains a rapidly friendly and close relation with China. In 2016, the economy of Thailand made a gradual recovery rather than high growth. The death of King Bhumibol Adulyadej has exerted limited direct economic impacts only on individual consumption and tourism and is not likely to cause a recession. An economic crisis will, however, be unavoidable if the political confrontations escalate before the general election to transfer power to the civil government.