• Title/Summary/Keyword: impact acceleration

Search Result 451, Processing Time 0.026 seconds

Benefits and Risks of Whole Body Vibration Based Acceleration Training (전신 진동기반 중력가속 운동의 효과와 위험성)

  • Lee, Woon-Yong
    • Journal of Wellness
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 2012
  • The benefits and risks of whole body vibration (WBV) based acceleration training on the human body have been documented for many years. WBV training has been shown to increase muscular strength, explosive power, bone strength, performance, mobility, cardiovascular function, circulation and anabolic hormone level and so on. The purpose of this review is correct understanding and application of WBV training. Without proper understanding, rather, to apply WBV to the human body can be fatal harm, and therefore know that what is vibration and has advantages and disadvantages. If there is anything positive side there is bound to the negative aspects. In this regard, WBV training can have a positive impact on the already confirmed by several studies and also, there have been scientifically proven. But still we are part of a scientific approach that is acceptable even to keep in mind that you will always coexist. Once again, the effect of WBV with a physical stimulus that risk and should be remembered. In addition, given the momentum and how to exercise and well-being well aware that vibration exercise as a way to think of how not to be familiar with.

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Gender differences in the impact magnitude and its attenuation during running (달리기 시 신체 충격 크기와 흡수의 성차)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.91-109
    • /
    • 2005
  • The goal of this research was to determine whether gender differences exist in impact force and impact shock variables at stance phase during a preferred running. Ten male and ten female subjects volunteered to participate in this study. Impact force was quantified by using a surface-mounted force plate. In addition, Axial accelerations of the tibias and mouth were measured using low-mass accelerometers. Comparison of parameters relating to impact force and impact shock which attained from time domain, and impact shock parameters which were analyzed in frequency domain were made between genders. The conclusions based on results were as follows; 1. There were no significantly differences in impact force, mouth and tibia acceleration peak in time domain between two genders. 2. The male group was greater in impact shock peak of PSD(power spectral density) at the tibia than female group(p<.05), but no differences in active impact of PSD at the tibia and the mouth between two genders. 3. Female subjects exhibited that a peak of impact shock attenuation analyzed in frequency domain moved toward a high frequency, but no difference in time domain between two genders.

The Effects of Running Shoes' Midsole Properties on Impact and Lower Extremity Joint's Dynamic Stability

  • Ryu, Sihyun;Gil, Ho-Jong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.290-296
    • /
    • 2021
  • Objective: The purpose of this research is to examine the effects of three types of different running shoes with different properties on impact variables (PVRGF and VLR) and the lower extremity joint's dynamic stability variables (LyEs of DPA, IEA, FEA, DPAV, IEAV, and FEAV) during running. Method: The participants in this research were 12 males (Age: 22.0 ± 3.3 years, Height: 177.2 ± 4.1 cm, Weight: 74.3 ± 9.6 kg). One type of N company's running shoes and two types (FA, FB) of F company's running shoes were used. As for the properties of the running shoes, thickness (mm), dwell time (ms), peak acceleration (m/s2), and energy return (%) were measured. The motions running at 3.5 m/s on a treadmill (Instrumented treadmill, Bertec, USA) wearing each type of running shoes were analyzed. Results: Although the VLR of the thick running shoes (FB) was smaller than that of the other running shoes (N, FA), the LyEs of PVGRF and DPA were larger (p<.05). Even though the running shoes' dwell time (i.e., impact absorption time) and peak acceleration showed a positive correlation with the LyEs of DPAV, IEAV, and FEAV, the energy return showed a negative correlation (p<.05). Conclusion: Our results indicated that the running shoes with excellent impact absorption function are predicted to be suitable for running beginners who need to reduce the burden of the lower extremity joint during running. The running shoes with excellent energy return are expected to be suitable for mid-and long-distance running elite athletes or marathoners to whom stability and consistency are essential during running.

Finite element analysis for the impact stability investigation of the motorcycle helmet (오토바이 헬멧의 충돌 안정성 검토를 위한 유한요소해석)

  • Yu, B.M.;Song, J.S.;Kim, D.;Lee, S.K.;Kim, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.409-412
    • /
    • 2007
  • A motorcycle helmet is the best means to protect the head of bike's driver and it is directly connected to a driver's life. Prior to producing of the helmet, it has to be passed the process of impact test to evaluate of its safety. This test evaluates peak acceleration and H.I.C (Head Injury Criteria). This paper analyzes impact test with finite element method to find the behavior of helmet during the test. Also, the effect of impact sites on the helmet was evaluated to improve the thickness distribution of the helmet.

  • PDF

Investigation for Impact Stability of the Motorcycle Helmet by Using Finite Element Method (유한요소법을 이용한 오토바이 헬멧의 충돌 안정성 검토)

  • Yu, B.M.;Song, J.S.;Kim, D.;Lee, S.K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.370-374
    • /
    • 2007
  • A motorcycle helmet is very essential to protect the head of driver and it is directly connected to driver's life. Prior to producing the helmet, it has to be passed the process of impact test to evaluate its safety. This test evaluates peak acceleration and head injury criteria (H.I.C.). This paper simulates the impact test with finite element method to find the behavior of helmet during the test. Also, the effect of impact sites on the helmet was evaluated to improve the thickness distribution of the helmet.

Vibration Characteristics of the Floor Structures Inserted with Damping Materials (제진재가 삽입된 바닥 구조의 진동특성에 대한 실험연구)

  • Jeon, Jin-Yong;Jeong, Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1036-1043
    • /
    • 2006
  • Damping materials for reducing heavy-weight floor impact noise in reinforced concrete structures were tested in apartment buildings. The effect of damping materials and an impact isolator were compared with an on-site experiment conducted in a high-rise apartment building. The loss factor of damping material analyzed more than 2 times than rubber to $1.5{\sim}2.3$, could know that Damping layer has excellent attenuation performance in side of vibration reduction. The results showed that the resonance frequency increased but vibration acceleration level decreased when the damping materials were used. The heavy-weight impact sound levels of the structure decreased substantially at 63 Hz, whereas the sound levels of the structure with the impact isolator increased.

A study on development of the pole side impact sled test using WorldSID (WorldSID를 이용한 기둥측면 충돌 슬레드 시험 개발 방법 연구)

  • Oh, Hyungjooon;Kim, Seungki;Lim, Kyungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.5-10
    • /
    • 2013
  • The pole side crash caused fatal injury by comparison with other crash impact mode such as frontal and rear crash. EuroNCAP proposed the pole side crash test using WorldSID(World Side Impact Dummy). The objective of this study is to develop the pole side impact sled test using dummy rib deflection between crash and sled test. In the pursuit of this purpose, we fabricated new pole side sled buck and test preliminary pole sled using ES-2re. Through this, we found the sled acceleration pulse scale. Hardness and thickness of the EPP affects the rib deflection. We conducted the pole sled test using WorldSID based on the preliminary results. As a result, rib deflection was shown to correlate well between crash test and pole side sled test.

Vibration Characteristics of Cantilever Beam with a Crack (단일 크랙을 갖는 외팔보의 진동특성)

  • Kim, Jong-Do;Jo, Ji-Yun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2014
  • In this paper, the natural frequency and damping ratio are analyzed with the acceleration signal of an Euler-Bernoulli beam using the impact hammer test. The results are presented according to crack depth and position using the recursive least squares method. The results are compared and investigated with FEM analysis of CATIA. Both methods agree well with each other regarding the natural mode characteristics. The captured acceleration can be used for the calculation of the natural frequency and damping ratio using time series methods that are based on the measured acceleration. Using these data, a recursive time series model with the acceleration signal was configured and the behaviors of the natural frequency and damping ratio were investigated and analyzed. Finally, the results can be used for the prediction of crack position and depth under different crack conditions for an Euler-Bernoulli beam.

Estimation of Penetration Depth Using Acceleration Signal Analysis for Underwater Free Fall Cone Penetration Tester

  • Seo, Jung-min;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Kang, Hyoun;Won, Sung Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-207
    • /
    • 2020
  • A track-type underwater construction robot (URI-R) was developed by the Korea Institute of Ocean Science & Technology. Because URI-R uses tracks to move on the seabed, insufficient ground strength may hinder its movement. For smooth operation of URI-R on the seabed, it is important to determine the geotechnical properties of the seabed. To determine these properties, standard penetration test (SPT), cone penetration test (CPT), and sampling are used on land. However, these tests cannot be applied on the seabed due to a high cost owing to the vessel, crane, sampler, and analysis time. To overcome these problems, a free fall cone penetration tester (FFCPT) is being developed. The FFCPT is a device that acquires the geotechnical properties during impact/penetration/finish phases by free fall in water. Depth information is crucial during soil data acquisition. As the FFCPT cannot measure the penetration depth directly, it is estimated indirectly using acceleration. The estimated penetration depth was verified by results of real tests conducted on land.