• 제목/요약/키워드: immunotherapy

검색결과 384건 처리시간 0.027초

Emerging Targets for Systemic Treatment of Gastric Cancer: HER2 and Beyond

  • In-Ho Kim
    • Journal of Gastric Cancer
    • /
    • 제24권1호
    • /
    • pp.29-56
    • /
    • 2024
  • In recent years, remarkable progress has been made in the molecular profiling of gastric cancer. This progress has led to the development of various molecular classifications to uncover subtype-specific dependencies that can be targeted for therapeutic interventions. Human epidermal growth factor receptor 2 (HER2) is a crucial biomarker for advanced gastric cancer. The recent promising results of novel approaches, including combination therapies or newer potent agents such as antibody-drug conjugates, have once again brought attention to anti-HER2 targeted treatments. In HER2-negative diseases, the combination of cytotoxic chemotherapy and programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors has become the established standard of care in first-line settings. In the context of gastric cancer, potential biomarkers such as PD-L1 expression, Epstein-Barr virus, microsatellite instability, and tumor mutational burden are being considered for immunotherapy. Recently, promising results have been reported in studies on anti-Claudin18.2 and fibroblast growth factor receptor 2 treatments. Currently, many ongoing trials are aimed at identifying potential targets using novel approaches. Further investigations will be conducted to enhance the progress of these therapies, addressing challenges such as primary and acquired resistance, tumor heterogeneity, and clonal evolution. We believe that these efforts will improve patient prognoses. Herein, we discuss the current evidence of potential targets for systemic treatment, clinical considerations, and future perspectives.

Unveiling the Gastrointestinal Microbiome Symphony: Insights Into Post-Gastric Cancer Treatment Microbial Patterns and Potential Therapeutic Avenues

  • Chan Hyuk Park
    • Journal of Gastric Cancer
    • /
    • 제24권1호
    • /
    • pp.89-98
    • /
    • 2024
  • This review delved into the intricate relationship between the gastrointestinal microbiome and gastric cancer, particularly focusing on post-treatment alterations, notably following gastrectomy, and the effects of anticancer therapies. Following gastrectomy, analysis of fecal samples revealed an increased presence of oral cavity aerotolerant and bile acid-transforming bacteria in the intestine. Similar changes were observed in the gastric microbiome, highlighting significant alterations in taxon abundance and emphasizing the reciprocal interaction between the oral and gastric microbiomes. In contrast, the impact of chemotherapy and immunotherapy on the gut microbiome was subtle, although discernible differences were noted between treatment responders and non-responders. Certain bacterial taxa showed promise as potential prognostic markers. Notably, probiotics emerged as a promising approach for postgastrectomy recovery, displaying the capacity to alleviate inflammation, bolster immune responses, and maintain a healthy gut microbiome. Several strains, including Bifidobacterium, Lactobacillus, and Clostridium butyricum, exhibited favorable outcomes in postoperative patients, suggesting their potential roles in comprehensive patient care. In conclusion, understanding the intricate interplay between the gastrointestinal microbiome and gastric cancer treatment offers prospects for predicting responses and enhancing postoperative recovery. Probiotics, with their positive impact on inflammation and immunity, have emerged as potential adjuncts in patient care. Continued research is imperative to fully harness the potential of microbiome-based interventions in the management of gastric cancer.

Emerging Trends in the Treatment of Advanced Hepatocellular Carcinoma: A Radiological Perspective

  • Gun Ha Kim;Jin Hyoung Kim;Pyeong Hwa Kim;Hee Ho Chu;Dong Il Gwon;Heung-Kyu Ko
    • Korean Journal of Radiology
    • /
    • 제22권11호
    • /
    • pp.1822-1833
    • /
    • 2021
  • This is a narrative review of various treatment modalities for advanced hepatocellular carcinoma (HCC), with a focus on recent updates in radiological treatments, as well as novel treatment concepts related to immune checkpoint inhibitors and combination therapies with locoregional treatments. Interventional radiologists have made efforts toward developing alternative and/or combination treatments for first-line systemic treatment of patients with advanced HCC. Locoregional treatments with or without systemic therapy may be considered in the selected patients. Various treatment modalities for advanced HCC are emerging, and several randomized controlled trials, including those of combination treatments with immunotherapy, are ongoing.

Immune Checkpoint Inhibitors in 10 Years: Contribution of Basic Research and Clinical Application in Cancer Immunotherapy

  • Jii Bum Lee;Hye Ryun Kim;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.2.1-2.22
    • /
    • 2022
  • Targeting immune evasion via immune checkpoint pathways has changed the treatment paradigm in cancer. Since CTLA-4 antibody was first approved in 2011 for treatment of metastatic melanoma, eight immune checkpoint inhibitors (ICIs) centered on PD-1 pathway blockade are approved and currently administered to treat 18 different types of cancers. The first part of the review focuses on the history of CTLA-4 and PD-1 discovery and the preclinical experiments that demonstrated the possibility of anti-CTLA-4 and anti-PD-1 as anti-cancer therapeutics. The approval process of clinical trials and clinical utility of ICIs are described, specifically focusing on non-small cell lung cancer (NSCLC), in which immunotherapies are most actively applied. Additionally, this review covers the combination therapy and novel ICIs currently under investigation in NSCLC. Although ICIs are now key pivotal cancer therapy option in clinical settings, they show inconsistent therapeutic efficacy and limited responsiveness. Thus, newly proposed action mechanism to overcome the limitations of ICIs in a near future are also discussed.

Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy

  • Jianxun Song
    • IMMUNE NETWORK
    • /
    • 제16권5호
    • /
    • pp.281-285
    • /
    • 2016
  • CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet b cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.

기존의 치료에 반응하지 않는 다발성 간전이 대장암 환자에서 방사선조사와 병합한 수지상세포 면역치료의 1, 2상 임상시험 (A Phase I/II Trial of $DCVac/IR^{(R)}$ Dendritic Cell Immunotherapy Combined with Irradiation in Cases of Refractory Colorectal Cancer with Multiple Liver Metastases)

  • 최영민;이형식;권혁찬;한상영;최종철;정주섭;김창원;김동원;강치덕
    • Radiation Oncology Journal
    • /
    • 제26권2호
    • /
    • pp.104-112
    • /
    • 2008
  • 목적: 기존치료에 반응하지 않는 다발성 간전이를 동반한 대장암 환자에서 방사선치료와 병합한 수지상세포 면역치료의 독성과 반응도를 조사하였다. 대상 및 방법: 2004년 5월부터 2006년 11월까지 다발성 간전이가 동반된 대장암 환자들 중에서 항암화학 요법에 반응하지 않은 환자 중 지원자를 대상으로 연구를 시행하였다. 본 임상 시험에 대하여 동아대학교병원과 부산대학교병원의 임상윤리심의위원회의 허가를 획득하였고, 동의서에 서명한 환자들을 임상 시험의 대상으로 등록하였다. 환자의 말초 혈액으로부터 수지상세포를 추출하여 배양하였다. 임상시험 일자에 맞추어서 $6{\times}10^6$개의 수지상세포를 바이알(0.5 ml)에 넣어서 디씨백/아이알 주사를 만들었다. 수지상세포 면역치료는 2주 간격으로 간전이암조직에 3회 주사하고, 5주에 내약성 평가를 하였다. 내약성 평가를 통과한 환자에게는 8주에 4번째 수지상세포 면역치료를 하였다. 병의 악화가 없거나 임상시험에 대한 환자의 동의 철회가 없는 경우에는 5, 6번째 수지상세포 면역치료를 각각 12, 16주에 시행하였다. 방사선치료는 수지상세포 면역치료를 주사할 간전이암 부위에 주사하기 전일 및 당일에 4 Gy씩을 조사하였다. 내약성 평가는 $3{\times}10^6$개의 수지상세포로부터 시작하여, $12{\times}10^6$개의 수지상세포까지 시행하였다. 내약성 평가의 최대 내성 용량으로 추가 임상시험을 하였다. 수지상세포 면역치료 주사를 맞은 모든 환자들에서 안전성 평가를 하였다. 4회 이상 주사를 맞은 환자들을 대상으로 10주에 치료 반응을 평가하여 유효성을 조사하였다. 결과: 임상시험에 등록한 24명 중 22명에서 수지상세포 면역치료를 시행하였다. 내성약 평가에는 14명이 등록하여 11명에서 평가를 완료하였다. 시험약과의 관련성이 있을 것으로 생각되는 grade 3 이상의 약물반응으로 인한 이상반응은 없었다. $12{\times}10^6$개의 수지상세포를 내성용량으로 확인하였고, 내성용량인 $12{\times}10^6$개 수지상세포 면역치료를 이용하여 8명에서 추가로 시험을 하였다. 치료에 대한 환자들의 내성은 양호하였고, grade 3을 초과하는 치명적인 부작용은 발생되지 않았다. 4회 이상의 수지상세포 면역치료 주사를 받은 환자가 17명이었고, 이 중의 15명에서는 종양의 반응도 평가가 이루어졌다. 본 연구의 목적은 안전성 평가이지만, 면역치료의 유효성 평가를 위해, 방사선치료와 수지상세포 면역치료 주사가 시행된 부위 외의 간전이암에서 반응도를 조사 하였다. 면역치료의 반응은 평가가 이루어진 환자들에서 정지성 병변이 4명, 진행성 병변이 11명 이었다. 결론: 수지상세포 면역치료와 병행한 방사선치료는 이론적으로 국소 및 전신 제어에 상승효과가 있을 것으로 기대할 수 있다. 하지만 기존 치료에 반응하지 않는 매우 진행된 직장암 환자들을 대상으로 한 본 연구에서는 방사선 치료와 병합한 수지상세포 면역치료로 인한 심각한 부작용의 발생은 없었다는 결과와 4예에서의 정지성 병변의 관찰을 보고한다. 수지상세포의 최대 투여 용량, 적절한 투여 방법, 적절한 방사선의 양, 방사선과 수지상 세포의 적절한 투여 간격 등에 관한 추가 연구를 통하여, 향후 제 2상, 3상 시험으로서의 진행 여부에 긍정적인 결과를 얻을 수 있다고 판단한다.

Targeting the epitope spreader Pep19 by naïve human CD45RA+ regulatory T cells dictates a distinct suppressive T cell fate in a novel form of immunotherapy

  • Kim, Hyun-Joo;Cha, Gil Sun;Joo, Ji-Young;Lee, Juyoun;Kim, Sung-Jo;Lee, Jeongae;Park, So Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • 제47권5호
    • /
    • pp.292-311
    • /
    • 2017
  • Purpose: Beyond the limited scope of non-specific polyclonal regulatory T cell (Treg)-based immunotherapy, which depends largely on serendipity, the present study explored a target Treg subset appropriate for the delivery of a novel epitope spreader Pep19 antigen as part of a sophisticated form of immunotherapy with defined antigen specificity that induces immune tolerance. Methods: Human polyclonal $CD4^+CD25^+CD127^{lo-}$ Tregs (127-Tregs) and $na\ddot{i}ve$ $CD4^+CD25^+CD45RA^+$ Tregs (45RA-Tregs) were isolated and were stimulated with target peptide 19 (Pep19)-pulsed dendritic cells in a tolerogenic milieu followed by ex vivo expansion. Low-dose interleukin-2 (IL-2) and rapamycin were added to selectively exclude the outgrowth of contaminating effector T cells (Teffs). The following parameters were investigated in the expanded antigen-specific Tregs: the distinct expression of the immunosuppressive Treg marker Foxp3, epigenetic stability (demethylation in the Treg-specific demethylated region), the suppression of Teffs, expression of the homing receptors CD62L/CCR7, and CD95L-mediated apoptosis. The expanded Tregs were adoptively transferred into an $NOD/scid/IL-2R{\gamma}^{-/-}$ mouse model of collagen-induced arthritis. Results: Epitope-spreader Pep19 targeting by 45RA-Tregs led to an outstanding in vitro suppressive T cell fate characterized by robust ex vivo expansion, the salient expression of Foxp3, high epigenetic stability, enhanced T cell suppression, modest expression of CD62L/CCR7, and higher resistance to CD95L-mediated apoptosis. After adoptive transfer, the distinct fate of these T cells demonstrated a potent in vivo immunotherapeutic capability, as indicated by the complete elimination of footpad swelling, prolonged survival, minimal histopathological changes, and preferential localization of $CD4^+CD25^+$ Tregs at the articular joints in a mechanistic and orchestrated way. Conclusions: We propose human $na\ddot{i}ve$ $CD4^+CD25^+CD45RA^+$ Tregs and the epitope spreader Pep19 as cellular and molecular targets for a novel antigen-specific Treg-based vaccination against collagen-induced arthritis.

동종 종양 세포 용해액을 이용한 수지상 세포 항암 백신의 흑색종 폐암 전이 모델에서의 효과 연구 (Effect of Dendritic Cell Based Cancer Vaccine Using Allogeneic Tumor Cell Lysate in Melanoma Pulmonary Metastasis Model)

  • 이영준;김명주;인소희;최옥미;백소영;권영도;이현아
    • IMMUNE NETWORK
    • /
    • 제5권3호
    • /
    • pp.163-171
    • /
    • 2005
  • Background: To perform the successful dendritic cell-based cancer immunotherapy one of the main issues to be solved is the source of antigen for DC pulsing. Limitations occur by using auto-tumor lysate due to the difficulties obtaining enough tumor tissue(s) quantitatively as well as qualitatively. In this study the possibility of allogeneic tumor cell lysate as a DC pulsing antigen has been tested in mouse melanoma pulmonary me tastasis model. Methods: B16F10 melanoma cells $(1{\timeS}10^5/mouse)$ were inoculated intra venously into the C57BL/6 mouse. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 (1,000 U/ml each) for 7 days and pulsed with lysate of either autologous B16F10 (B-DC), allogeneic K1735 (C3H/He origin; K-DC) or CloneM3 (DBA2 origin; C-DC) melanoma cells for 18 hrs. Pulsed-DCs $(1{\times}10^6/mouse)_{[CGP1]}$ were injected i.p. twice with one week interval starting from the day 1 after tumor cell inoculation. Results: Without observable toxicity, allogeneic tumor cell lysate pulsed-DC induced the significantly better anti-tumor response (tumor scale: $2.7{\pm}0.3,\;0.7{\pm}0.3\;and\;0.3{\pm}0.2$ for saline, B-DC and C-DC treated group, respectively). Along with increased tumor specific lymphocyte proliferations, induction of IFN-${\gamma}$ secretion against both auto- and allo-tumor cell lysates was observed from the DC treated mice. (w/B16F10-lysate: $44.97{\pm}10.31,\;1787.94{\pm}131.18,\;1257.15{\pm}48.27$, w/CloneM3 lysate: 0, $1591.13{\pm}1.83,\;1460.47{\pm}86.05pg/ml$ for saline, B-DC and C-DC treated group, respectively) Natural killer cell activity was also increased in the mice treated with tumor cell lysate pulsed-DC ($8.9{\pm}_{[CGP2]}0.1,\;11.6{\pm}0.8\;and\;12.6{\pm}0.7%$ specific NK activity for saline, B-DC and C-DC treated group, respectively). Conclusion: Conclusively, promising data were obtained that allogeneic-tumor cell lysate can be used as a tumor antigen for DC-based cancer immunotherapy.

Impact of IL-2 and IL-2R SNPs on Proliferation and Tumor-killing Activity of Lymphokine-Activated Killer Cells from Healthy Chinese Blood Donors

  • Li, Yan;Meng, Fan-Dong;Tian, Xin;Sui, Cheng-Guang;Liu, Yun-Peng;Jiang, You-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7965-7970
    • /
    • 2014
  • One of the goals of tumor immunotherapy is to generate immune cells with potent anti-tumor activity through in vitro techniques using peripheral blood collected from patients. However, cancer patients generally have poor immunological function. Thus using patient T cells, which have reduced in vitro proliferative capabilities and less tumor cell killing activity to generate lymphokine-activated killer (LAK) cells, fails to achieve optimal clinical efficacy. Interleukin-2 (IL-2) is a potent activating cytokine for both T cells and natural killer cells. Thus, this study aimed to identify optimal donors for allogeneic LAK cell immunotherapy based on single nucleotide polymorphisms (SNP) in the IL-2 and IL-2R genes. IL-2 and IL-2R SNPs were analyzed using HRM-PCR. LAK cells were derived from peripheral blood mononuclear cells by culturing with IL-2. The frequency and tumor-killing activity of LAK cells in each group were analyzed by flow cytometry and tumor cell killing assays, respectively. Regarding polymorphisms at IL-2-330 (rs2069762) T/G, LAK cells from GG donors had significantly greater proliferation, tumor-killing activity, and IFN-${\gamma}$ production than LAK cells from TT donors (P<0.05). Regarding polymorphisms at IL-2R rs2104286 A/G, LAK cell proliferation and tumor cell killing were significantly greater in LAK cells from AA donors than GG donors (P<0.05). These data suggest that either IL-2-330(rs2069762)T/G GG donors or IL-2R rs2104286 A/G AA donors are excellent candidates for allogeneic LAK cell immunotherapy.

마우스 동종 줄기세포 유래 수지상 세포를 이용한 백신의 흑색종 폐암 전이 모델에서의 항암 효과 및 기전 연구 (Anti-cancer Effect of Hematopoietic Stem Cell-derived Allogeneic-DC Vaccine in Melanoma Metastasis Model)

  • 김명주;손혜진;백소영;이강은;이영준;이현아
    • IMMUNE NETWORK
    • /
    • 제6권3호
    • /
    • pp.154-162
    • /
    • 2006
  • Background: Dendritic cell (DC)-based cancer immunotherapy is studied for several years. However, it is mainly derived from autologous PBMC or leukapheresis from patient, which has limitations about yield and ability of DC production according to individual status. In order to solve these problems, inquiries about allogeneic DCs are performed but there are no preclinical trial answers for effect or toxicity of allogeneic DC to use for clinical trial. In this study, we compared the anti-tumor effect of allogeneic and autologous DCs from mouse bone marrow stem cells in mouse metastatic melanoma model. Methods: B16F10 melanoma cells ($5{\times}10^4$/mouse) were injected intravenously into the C57BL/6 mouse. Therapeutic DCs were differentiated from autologous (C57BL/6: CDC) or allogeneic (B6C3F1: BDC) bone marrow stem cells with GM-CSF, SCF and IL-4 for 13days and pulsed with B16F10 tumor cell lysate (Blys) for 18hrs. DC intra-peritoneal injections began on the 8th day after the tumor cell injection by twice with one week interval. Results: Anti-tumor response was observed by DC treatment without any toxicity especially in allogeneic DC treated mice (tumor burden score: $2.667{\pm}0.184,\;2.500{\pm}0.463,\;2.000{\pm}0.286,\;1.500{\pm}0.286,\;1.667 {\pm}0.297$ for saline, CDC/unpulsed-DC: U-DC, CDC/Blys-DC, BDC/U-DC and BDC/Blys-DC, respectively). IFN-${\gamma}$ secretion was significantly increased in allogeneic DC group stimulated with B16F10 cell lysate ($2,643.3{\pm}5,89.7,\;8,561.5{\pm}2,204.9.\;6,901.2{\pm}141.1pg/1{\times}10^6$ cells for saline, BDC/U-DC and BDC/Blys-DC, respectively) with increased NK cell activity. Conclusion: Conclusively, promising data was obtained that allogeneic DC can be used for DC-based cancer immunotherapy.