• Title/Summary/Keyword: immunotherapies

Search Result 47, Processing Time 0.024 seconds

T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells

  • Hye-Ran Kim;Jeong-Su Park;Won-Chang Soh;Na-Young Kim;Hyun-Yoong Moon;Ji-Su Lee;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2023
  • Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.

Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies

  • Jung-Hyun Park;Seung-Woo Lee;Donghoon Choi;Changhyung Lee;Young Chul Sung
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.9.1-9.21
    • /
    • 2024
  • The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.

Commensal Microbiota and Cancer Immunotherapy: Harnessing Commensal Bacteria for Cancer Therapy

  • Jihong Bae; Kwangcheon Park;You-Me Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.21
    • /
    • 2022
  • Cancer is one of the leading causes of death worldwide and the number of cancer patients is expected to continuously increase in the future. Traditional cancer therapies focus on inhibiting cancer growth while largely ignoring the contribution of the immune system in eliminating cancer cells. Recently, better understanding of immunological mechanisms pertaining to cancer progress has led to development of several immunotherapies, which revolutionized cancer treatment. Nonetheless, only a small proportion of cancer patients respond to immunotherapy and maintain a durable response. Among multiple factors contributing to the variability of immunotherapy response rates, commensal microbiota inhabiting patients have been identified as one of the most critical factors determining the success of immunotherapy. The functional diversity of microbiota differentially affects the host immune system and controls the efficacy of immunotherapy in individual cancer patients. Moreover, clinical studies have demonstrated that changing the gut microbiota composition by fecal microbiota transplantation in patients who failed a previous immunotherapy converts them to responders of the same therapy. Consequently, both academic and industrial researchers are putting extensive efforts to identify and develop specific bacteria or bacteria mixtures for cancer immunotherapy. In this review, we will summarize the immunological roles of commensal microbiota in cancer treatment and give specific examples of bacteria that show anticancer effect when administered as a monotherapy or as an adjuvant agent for immunotherapy. We will also list ongoing clinical trials testing the anticancer effect of commensal bacteria.

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Antoine Bouchard;Mariko Witalis;Jinsam Chang;Vincent Panneton;Joanna Li;Yasser Bouklouch;Woong-Kyung Suh
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.36.1-36.13
    • /
    • 2020
  • Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis

  • Seon Ha Jo;Kyeong Ah Jo;Soo-yeon Park;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.880-890
    • /
    • 2024
  • The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.

Targeted Therapy of Advanced Non-Small Cell Lung Cancer (비소세포폐암 환자의 표적 치료)

  • Yun-Gyoo Lee;Hyun-Il Gil;Soo Jeong Kim;Hyunjoo Lee;Heerim Nam;Soo-Youn Ham;Du-Young Kang
    • The Korean Journal of Medicine
    • /
    • v.99 no.2
    • /
    • pp.96-103
    • /
    • 2024
  • Lung cancer is the leading cause of cancer death in Republic of Korea. After their initial diagnosis, only 10-20% of patients with advanced non-small cell lung cancer (NSCLC) survive for 5 years of longer. Given enormous advances in therapeutics such as novel targeted therapies and immunotherapies, survival rates are improving for advanced patients with NSCLC; 5-year survival rates range from 15% to 50%, contingent upon the biomarker. Detection of the specific molecular alteration as biomarker is thus crucial for identifying subgroups of NSCLC that contain therpapeutically targetable oncogenic drivers. This review examines the process of diagnosing lung adenocarcinoma with dominant biomarkers in order to customize treatment with appropriate targeted therapy.

Identification of Tumor Antigens in Lung Cancer Patient by SEREX (폐암 환자에서 면역항원유전자의 혈청학적 동정)

  • Min, Young-Ki;Ha, Jin-Mok;Son, Young-Ok;Park, Hae-Rim;Lee, Min-Ki;Park, Yeoung-Min;Kim, Cheol-Min;Lee, Sang-Yull
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1082-1089
    • /
    • 2007
  • Serological anlysis of recombinant cDNA expression libraries (SEREX) has led to identification of several categories of new antigens recognized by the immune system of cancer patients, which are referred to as the cancer immunome. We analyzed normal testis cDNA expression libraries with serumobtained from non-small lung cancer patient and isolated 40 distinct antigen designated KP-LuT-1 through KP-LuT-40. Among these antigens 20 antigens were previously identified by SEREX analysis of other tumor types, and 20 out of 40 antigens (50%) did not match entries in Cancer Immunome Database and were considered newly identified antigens. Sequencing analysis showed that the anti-gens comprised 26 functional known proteins and 14 noble/uncharacterized gene products. Of these, the hypothetical protein KP-LuT-6 was shown tissue-restricted. RT-PCR showed it to be expressed strongly only in normal testis. In addition to normal tissues-restricted expression, KP-LuT-6 mRNA was detected in lung tumor samples(3/l0), stomach tumor samples(3/l0), and breast tumor samples(l/5), whereas not detected in colon tumor samples(O/I2). These data suggest that KP-LuT-6 is a cancer/testis (CT)-like antigen as a potential target for cancer immunotherapies.