• Title/Summary/Keyword: immunomodulators

Search Result 41, Processing Time 0.02 seconds

Immune-Enhancing Activity of Staphylea bumalda Leave (고추나무 잎의 면역증진 활성)

  • Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.86-86
    • /
    • 2020
  • The leaves of Staphylea bumalda (S. bumalda) as a deciduous tree distributed in Korea, China and Japan are used to treat respiratory diseases or inflammation. However, there is no scientific research on the immune-enhancing activity of S. bumalda leaves. Thus, in this study, we investigated the effect of water extracts from S. bumalda leaves (SBL) on the macrophage activity using mouse macrophage cells, RAW264.7. SBL increased production of immunomodulators such as NO, iNOS, IL-1β, IL-6, TNF-α and MCP-1 in RAW264.7 cells and activated phagocytic activity of RAW264.7 cells. Inhibition of TLR2 and TLR4 blocked SBL-mediated production of immunomodulators in RAW264.7 cells. In addition, SBL-mediated production of immunomodulators was attenuated by JNK inhibition in RAW264.7 cells. SBL increased JNK phosphorylation, while Inhibition of TLR2 and TLR4 blocked SBL-mediated JNK phosphorylation in RAW264.7 cells. These results are thought to be evidence that SBL activates JNK through stimulation of TLR2 and TLR4 in macrophage to induce the production of immunomodulators. In LPS-stimulated RAW264.7 cells, SBL inhibited over-production of immunomodulators. Summarizing the results, SBL showed immunostimulatory activity under normal conditions and immunosuppressive activity under LPS-induced excessive immune response conditions.

  • PDF

Immune-Enhancing Activity of Hydrangea macrophylla subsp. serrata Leaves through Macrophage Activation (산수국 잎의 대식세포 활성화를 통한 면역증진활성)

  • Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.87-87
    • /
    • 2020
  • In this study, we investigated the immune-enhancing activity of water extracts from Hydrangea macrophylla subsp. serrata (WE-HML). WE-HML increased cell viability and production of immunomodulators, which contributed to activating phagocytic activity in RAW264.7 cells. Inhibition of JNK and NF-κB reduced the production of immunomodulators by WE-HML. ROS inhibition suppressed the production of immunomodulators, and the activation of JNK and NF-κB signaling by WE-HML. TLR4 inhibition attenuated the production of immunomodulators, and activation of JNK and NF-κB signaling by WE-HML. In the immunosuppressed mouse model, WE-HML increased the spleen index, the levels of the cytokines, the numbers of white blood cells, lymphocytes, and neutrophils. However, WE-HML inhibited LPS-mediated overproduction of pro-inflammatory mediators in RAW264.7 cells, which indicated that WE-HML may have anti-inflammatory activity under excessive inflammatory conditions. Taken together, WE-HML may be considered to have immune-enhancing activity and expected to be used as a potential immune-enhancing agent.

  • PDF

Immune-Enhancing Activity of Wild Simulated Ginseng through TRL2/4-Dependent Activation of MAPK, NF-κB and PI3K/AKT Pathways (산양삼의 TRL2/4 의존성 MAPK, NF-κB 및 PI3K/AKT 신호전달 활성화를 통한 면역증진활성)

  • Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.88-88
    • /
    • 2020
  • Ginseng (Panax ginseng Meyer) is a very well-known traditional herbal medicine that has long been used to enhance the body's immunity. Because it is a type of ginseng, it is believed that wild simulated ginseng (WSG) also has immune-enhancing activity. However, study on the immune-enhancing activity of WSG is quite insufficient compared to ginseng. In this study, we evaluated immune-enhancing activity of WSG through macrophage activation to provide a scientific basis for the immune enhancing activity of WSG. WSG increased the production of immunomodulators such as NO, iNOS, COX-2, IL-1β, IL-6 and TNF-α and activated phagocytosis in mouse macrophages RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by WSG. WSG activated MAPK, NF-κB and PI3K/AKT signaling pathways, and inhibition of such signaling activation blocked WSG-mediated production of immunomodulators. In addition, activation of MAPK, NF-κB and PI3K/AKT signaling pathways by WSG was reversed by TLR2 or TLR4 inhibition. Based on the results of this study, WSG is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, it is thought that WSG have the potential to be used as an agent for enhancing immunity.

  • PDF

Patterns of Ulcerative Colitis Treatments and Factors Affecting the Prescribing of Systemic Corticosteroid using Health Insurance Claims Database (건강보험 청구자료를 이용한 궤양성 대장염 치료제의 처방 양상과 전신 스테로이드 처방에 미치는 영향요인)

  • Kim, Jiyool;Park, So-Hee;Shin, Ju-Young
    • Korean Journal of Clinical Pharmacy
    • /
    • v.30 no.2
    • /
    • pp.102-112
    • /
    • 2020
  • Objective: To analyze the prescription patterns for the treatment of ulcerative colitis (UC) and to investigate factors co-occurring with systemic corticosteroid use. Methods: We used patient-level data from Korean National Health Insurance claims database to identify patients diagnosed with UC (ICD-10 code : K51) and their medications prescribed for UC between January 1 and Decemeber 31, 2017. We found that medications for UC treatment were 5-aminosalicylic acid (5-ASA), immunomodulators, biologics, and corticosteroids. We presented the prescription pattern according to the sex, age group, type of health insurance, site of UC, type of medical institution, and concomitant medication. To evaluate factors associated with prescription of systemic corticosteroids for UC, we used a multivariate logistic regression model to estimate adjusted odds ratios (aORs) and their 95% confidence intervals (CIs). Results: Of 1,469 UC patients, 74.5% used 5-ASA and 15.2% used systemic corticosteroids. 5-ASA constituted 77.5% of all prescriptions and systemic corticosteroids accounted for 13.1%. The most widely used therapy was 5-ASA monotherapy (54.8%), followed by a double therapy with 5-ASA and immunomodulators (8.2%) or 5-ASA and systemic corticosteroids (7.2%). Systemic corticosteroids were more likely to be prescribed with immunomodulators (aOR=1.88, 95% CI=1.54-2.28) and biologics (aOR=2.82, 95% CI=2.28-3.50) than without them. Conclusions: We found that 15.2% of UC patients were prescribed with a systemic corticosteroid, which is less than reported previously. Systemic corticosteroids were more likely to be prescribed with immunomodulators and biologics.

Immune-Enhancing Effects of Green Lettuce (Lactuca sativa L.) Extracts through the TLR4-MAPK/NF-κB Signaling Pathways in RAW264.7 Macrophage Cells

  • Seo, Hyun-Ju;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.3
    • /
    • pp.183-193
    • /
    • 2020
  • Recently, as a natural substance has been emphasized interest in research to enhance the immune function. Green lettuce (Lactuca sativa L.) is a popular vegetable used fresh and it contains various phytochemicals and antioxidant compounds, and has been reported to have various physiological activities such as antibacterial, antioxidant, antitumor and anti-mutagenic. However, only a few studies have investigated on the mechanism of action of immune-enhancing activity of lettuce. Therefore, in this study, the immunomodulatory activities and potential mechanism of action of Green lettuce extracts (GLE) were evaluated in the murine macrophage cell line RAW264.7. GLE significantly increased NO levels by RAW264.7 cells, as well as expressions of immunomodulators such as iNOS, COX-2, IL-1β, IL-6, IL-12, TNF-α and MCP-1. Although GLE activated ERK1/2, p38, JNK and NF-κB, GLE-mediated expressions of immunomodulators was dependent on p38, JNK and NF-κB. In addition, TLR4 inhibition blocked GLE-mediated expressions of immunomodulators and activation of p38, JNK and NF-κB. Taken together, these results demonstrated that TLR4-MAPK/NF-κB signalling pathways participated in GLE-induced macrophage activation and GLE could be developed as a potential immunomodulating functional food.

Effects of Lycii fructus and Astragalus membranaceus Mixed Extracts on Immunomodulators and Prevention of Diabetic Cataract and Retinopathy in Streptozotocin-induced Diabetes Rat Model (Streptozotocin으로 유발한 당뇨병성 쥐에서의 당뇨병성 백내장과 망막병증에 대한 구기자와 황기 혼합 추출물 등의 면역 조절 및 예방 효과)

  • Jeon, Yun-Hui;Moon, Jun-Woong;Kweon, Hyuk-Jung;Jeoung, Young-Jun;An, Chi-Sun;Jin, Hai-Lan;Hur, Sun-Jin;Lim, Beong-Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2010
  • This study was conducted to investigate the effects of Lycii fructus and Astragalus membranaceus mixed extracts on immunomodulators and prevention in a streptozotocin-induced diabetes rat model. A total of 28 male rats were divided into four dietary groups and fed a commercial diet (A), commercial diet plus induced diabetes by a streptozotocin (STZ) injection (B), induced diabetes by STZ plus medicinal crop extracts(I&$H^{(R)}$) diet (C), and medicinal crop extracts (I&$H^{(R)}$) diet (D). Immunoblotting analyses revealed cytokine expression, and ELISA analyses revealed immunoglobulin E and nitric oxide production. As a results, the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and inducible nitric oxide synthase (iNOS) as a inflammatory cytokine were decreased. Interleukin-6 (IL-6) and signal transducer and activation of transcription 3 (STAT3) cytokine related in diabetes expression through JAK/STAT3 pathway were also decreased. Furthermore, immunoglobulin E and nitric oxide production were decreased in the serum and lens, respectively. These results suggest that Lycii fructus and Astragalus membranaceus mixed extracts provide positive effects on immunomodulators and prevention in diabetes and eye disease complications.

In vitro Immunostimulatory Activity of Bok Choy (Brassica campestris var. chinensis) Sprouts in RAW264.7 Macrophage Cells

  • Geum, Na Gyeong;Yeo, Joo Ho;Yu, Ju Hyeong;Choi, Min Yeong;Lee, Jae Won;Baek, Jueng Kyu;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • Bok choy is one of Brassica vegetables widely consumed worldwide. Brassica vegetables have been reported to exert various pharmacological activities such as antioxidant, anti-cancer and cardioprotective activity. However, studies on immunostimulatory activity of bok choy sprout have not been conducted properly. Thus, in this study, we investigated in vitro immunostimulatory activity of bok choy sprout extract (BCS) using mouse macrophage RAW264.7 cells. Our results showed that BCS increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6, IL-12, TNF-α and MCP-1, and phagocytic activity in RAW264.7 cells. BCS activated MAPK, NF-κB and PI3K/AKT signaling pathways. However, BCS-mediated production of immunomodulators was dependent on JNK, NF-κB and PI3K/AKT signaling pathways. the mRNA expression of TLR2 were significantly increased by BCS, TLR2 inhibition by anti-TLR2 dramatically suppressed the production of immunomodulators by BCS. In addition, TLR2 inhibition by anti-TLR2 significantly reduced BCS-mediated phosphorylation level of AKT, JNK and NF-κB. From these results, BCS may have immunostimulatory activity via TLR2-MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, BCS expected to be used as a potential immune-enhancing agent.

Isolation And Identification Of Soil Streptomyces sp. Producing An Immunomodulator That Restores Ultraviolet B Radiation-Induced Suppression Of The Immune Response (자외선에 의한 면역반응의 억제를 회복시키는 면역조절물질을 생산하는 토양 Streptomyces sp.의 분리 및 동정)

  • 모영근;신영근;박동진;김창진;이종길;한성순
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.585-592
    • /
    • 1995
  • Soil microorganisms producing immunomoduators that can restore ultraviolet B (UVB) radiation-induced suppression of the immune response were screened in vitro. Exposure of freshly isolated murine epidermal cells (EC) to $180{\;}J/m^{2}$ of UVB radiation resulted in approximately 90% impairtnent of accessory cell function, as measured by their ability to support anti-CD3 monoclonal antibody-induced T-cell mitogenesis. When the culture supenmtants of 150 actinomycete strains were exanuned for their capacity to prevent or repair the UVB-induced impairment of accessory cell function, 4 of them were identified to contain immunomodulators that can restore the decreased accessory cell finiction. The soil isolate that showed the most effective restorative activity, G40025. was selected and fturther characters Addition of 10.mu.l of the culture supernatant of G40025 grown in G-media to cultures of UVB-irradiated EC right after UVB-irradiation restored the decreased accessory cell function by 58%. The immunomodtdator produced by G40025 appeared to be stable at 100.deg. C for 10 min. Taxonomical studies by cultural, morphological, and physiological characterization showed that the soil isolate, G40025, belongs to the genus Streptomyces.

  • PDF