• Title/Summary/Keyword: immunology

Search Result 1,674, Processing Time 0.035 seconds

Apoptosis inhibitor 5 increases metastasis via Erk-mediated MMP expression

  • Song, Kwon-Ho;Kim, Seok-Ho;Noh, Kyung Hee;Bae, Hyun Cheol;Kim, Jin Hee;Lee, Hyo-Jung;Song, Jinhoi;Kang, Tae Heung;Kim, Dong-Wan;Oh, Se-Jin;Jeon, Ju-Hong;Kim, Tae Woo
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.330-335
    • /
    • 2015
  • Apoptosis inhibitor 5 (API5) has recently been identified as a tumor metastasis-regulating gene in cervical cancer cells.However, the precise mechanism of action for API5 is poorly understood. Here, we show that API5 increases the metastatic capacity of cervical cancer cells in vitro and in vivo via up-regulation of MMP-9. Interestingly, API5-mediated metastasis was strongly dependent on the Erk signaling pathway. Conversely, knock-down of API5 via siRNA technology decreased the level of phospho-Erk, the activity of the MMPs, in vitro invasion, and in vivo pulmonary metastasis. Moreover, the Erk-mediated metastatic action was abolished by the mutation of leucine into arginine within the heptad leucine repeat region, which affects protein-protein interactions. Thus, API5 increases the metastatic capacity of tumor cells by up-regulating MMP levels via activation of the Erk signaling pathway. [BMB Reports 2015; 48(6): 330-335]

Biological and Genetic Characterization of Cryptosporidium spp. and Giardia duodenalis Isolates from Five Hydrographical Basins in Northern Portugal

  • Almeida, Andre;Moreira, Maria Joao;Soares, Sonia;Delgado, Maria De Lurdes;Figueiredo, Joao;Silva, Elisabete;Castro, Antonio;Da Costa, Alexandra Viana;Da Costa, Jose Manuel Correia
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • To understand the situation of water contamination with Cryptosporidium spp. and Giardia spp. in the northern region of Portugal, we have established a long-term program aimed at pinpointing the sources of surface water and environmental contamination, working with the water-supply industry. Here, we describe the results obtained with raw water samples collected in rivers of the 5 hydrographical basins. A total of 283 samples were analyzed using the Method 1623 EPA, USA. Genetic characterization was performed by PCR and sequencing of genes 18S rRNA of Cryptosporidium spp. and $\beta$-giardin of Giardia spp. Infectious stages of the protozoa were detected in 72.8% (206 of 283) of the water samples, with 15.2% (43 of 283) positive for Giardia duodenalis cysts, 9.5% (27 of 283) positive for Cryptosporidium spp. oocysts, and 48.1% (136 of 283) samples positive for both parasites. The most common zoonotic species found were G. duodenalis assemblages A-I, A-II, B, and E genotypes, and Cryptosporidium parvum, Cryptosporidium andersoni, Cryptosporidium hominis, and Cryptosporidium muris. These results suggest that cryptosporidiosis and giardiasis are important public health issues in northern Portugal. To the authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in raw water samples in the northern region of Portugal.

Transcriptional Analysis of 10 Selected Genes in a Model of Penicillin G Induced Persistence of Chlamydophila psittaci in HeLa Cells

  • Hu, Yanqun;Chen, Lili;Wang, Chuan;Xie, Yafeng;Chen, Zhixi;Liu, Liangzhuan;Su, Zehong;Wu, Yimou
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1246-1256
    • /
    • 2015
  • Chlamydophila psittaci is an important intracellular pathogen. Persistent infection is an important state of the host-parasite interaction in this chlamydial infection, which plays a significant role in spreading the organism within animal populations and in causing chronic chlamydiosis and serious sequelae. In this study, a C. psittaci persistent infection cell model was induced by penicillin G, and real-time quantitative PCR was used to study the transcriptional levels of 10 C. psittaci genes (dnaA, dnaK, ftsW, ftsY, grpE, rpsD, incC, omcB, CPSIT_0846, and CPSIT_0042) in acute and penicillin-G-induced persistent infection cultures. Compared with the acute cultures, the penicillin-G-treated cultures showed a reduced chlamydial inclusion size and a significantly decreased number of elementary body particles. Additionally, some enlarged aberrant reticulate body particles were present in the penicillin-G-treated cultures but not the acute ones. The expression levels of genes encoding products for cell division (FtsW, FtsY) and outer membrane protein E encoding gene (CPSIT_0042) were downregulated (p < 0.05) from 6 h post-infection onward in the persistent infection cultures. Also from 6 h post-infection, the expression levels of DnaA, DnaK, IncC, RpsD, GrpE, and CPSIT_0846 were upregulated (p < 0.05); however, the expression level of OmcB in the persistent infection was< almost the same as that in the acute infection (p > 0.05). These results provide new insight regarding molecular activities that accompany persistence of C. psittaci, which may play important roles in the pathogenesis of C. psittaci infection.

Entinostat, a histone deacetylase inhibitor, increases the population of IL-10+ regulatory B cells to suppress contact hypersensitivity

  • Min, Keun Young;Lee, Min Bum;Hong, Seong Hwi;Lee, Dajeong;Jo, Min Geun;Lee, Ji Eon;Choi, Min Yeong;You, Jueng Soo;Kim, Young Mi;Park, Yeong Min;Kim, Hyuk Soon;Choi, Wahn Soo
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.534-539
    • /
    • 2021
  • IL-10+ regulatory B (Breg) cells play a vital role in regulating the immune responses in experimental autoimmune encephalomyelitis, colitis, and contact hypersensitivity (CHS). Several stimulants such as lipopolysaccharide (LPS), CD40 ligand, and IL-21 spur the activation and maturation of IL-10+ Breg cells, while the epigenetic mechanism for the IL-10 expression remains largely unknown. It is well accepted that the histone acetylation/deacetylation is an important mechanism that regulates the expression of IL-10. We found that entinostat, an HDAC inhibitor, stimulated the induction of IL-10+ Breg cells by LPS in vitro and the formation of IL-10+ Breg cells to suppress CHS in vivo. We further demonstrated that entinostat inhibited HDAC1 from binding to the proximal region of the IL-10 expression promoter in splenic B cells, followed by an increase in the binding of NF-κB p65, eventually enhancing the expression of IL-10 in Breg cells.

Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages

  • Lee, Eunju;Eo, Jun-Cheol;Lee, Changjun;Yu, Je-Wook
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • Tissue-resident macrophages play an important role in maintaining tissue homeostasis and innate immune defense against invading microbial pathogens. Brain-resident macrophages can be classified into microglia in the brain parenchyma and non-parenchymal brain macrophages, also known as central nervous system-associated or border-associated macrophages, in the brain-circulation interface. Microglia and non-parenchymal brain macrophages, including meningeal, perivascular, and choroid plexus macrophages, are mostly produced during embryonic development, and maintained their population by self-renewal. Microglia have gained much attention for their dual roles in the maintenance of brain homeostasis and the induction of neuroinflammation. In particular, diverse phenotypes of microglia have been increasingly identified under pathological conditions. Single-cell phenotypic analysis revealed that microglia are highly heterogenous and plastic, thus it is difficult to define the status of microglia as M1/M2 or resting/activated state due to complex nature of microglia. Meanwhile, physiological function of non-parenchymal brain macrophages remain to be fully demonstrated. In this review, we have summarized the origin and signatures of brain-resident macrophages and discussed the unique features of microglia, particularly, their phenotypic polarization, diversity of subtypes, and inflammasome responses related to neurodegenerative diseases.

Diagnosing Balamuthia mandrillaris amebic meningoencephalitis in a 64-year-old woman from the Southwest of China

  • Suhua Yao;Xiaoting Chen;Lian Qian;Shizheng Sun;Chunjing Zhao;Zongkai Bai;Zhaofang Chen;Youcong Wu
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.2
    • /
    • pp.183-193
    • /
    • 2023
  • Balamuthia mandrillaris amebic encephalitis (BAE) can cause a fatal condition if diagnosis is delayed or effective treatment is lacking. Patients with BAE have been previously reported in 12 provinces of China, with skin lesions being the primary symptom and encephalitis developing after several years. However, a significantly lower number of cases has been reported in Southwest China. Here we report an aggressive BAE case of a 64-year-old woman farmer with a history of skin lesions on her left hand. She was admitted to our hospital due to symptoms of dizziness, headache, cough, vomiting, and gait instability. She was initially diagnosed with syphilitic meningoencephalitis and received a variety of empirical treatment that failed to improve her symptoms. Finally, she was diagnosed with BAE combined with amebic pneumonia using next-generation sequencing (NGS), qRT-PCR, sequence analysis, and imaging studies. She died approximately 3 weeks after the onset. This case highlights that the rapid development of encephalitis can be a prominent clinical manifestation of Balamuthia mandrillaris infection.

Tumor Promoting Function of DUSP10 in Non-Small Cell Lung Cancer Is Associated With Tumor-Promoting Cytokines

  • Xing Wei;Chin Wen Png;Madhushanee Weerasooriya;Heng Li;Chenchen Zhu;Guiping Chen;Chuan Xu;Yongliang Zhang;Xiaohong Xu
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.34.1-34.15
    • /
    • 2023
  • Lung cancer, particularly non-small cell lung cancer (NSCLC) which contributes more than 80% to totally lung cancer cases, remains the leading cause of cancer death and the 5-year survival is less than 20%. Continuous understanding on the mechanisms underlying the pathogenesis of this disease and identification of biomarkers for therapeutic application and response to treatment will help to improve patient survival. Here we found that a molecule known as DUSP10 (also known as MAPK phosphatase 5) is oncogenic in NSCLC. Overexpression of DUSP10 in NSCLC cells resulted in reduced activation of ERK and JNK, but increased activation of p38, which was associated with increased cellular growth and migration. When inoculated in immunodeficient mice, the DUSP10-overexpression NSCLC cells formed larger tumors compared to control cells. The increased growth of DUSP10-overexpression NSCLC cells was associated with increased expression of tumor-promoting cytokines including IL-6 and TGFβ. Importantly, higher DUSP10 expression was associated with poorer prognosis of NSCLC patients. Therefore, DUSP10 could severe as a biomarker for NSCLC prognosis and could be a target for development of therapeutic method for lung cancer treatment.

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.