• Title/Summary/Keyword: immunological memory

Search Result 15, Processing Time 0.027 seconds

Pre-existing Immunity to Endemic Human Coronaviruses Does Not Affect the Immune Response to SARS-CoV-2 Spike in a Murine Vaccination Model

  • Ahn Young Jeong;Pureum Lee;Moo-Seung Lee;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2023
  • Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

Pharmacological Activities of Flavonoids (III) Structure-Activity Relationships of Flavonoids in Immunosuppression

  • Kim, Chang-Johng;Cho, Seung-Kil
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.147-159
    • /
    • 1991
  • Effects of twenty-one different flavonoids and their related compounds on the phagocytosis of colloidal carbon by macrophages in liver and spleen humoral immune responses against bacterial $\alpha$-amylase and cellular immune responses against oxazolone and dinitrofluorobenzene were studied in vivo and in vitro. It was shown that most of the flavonoids accelerated significantly the phagocytosis, and they suppressed significantly not only humoral and cellular immune responses but also the development of immunological memory after the antigenic stimulation. Especially, malvin was the most active in phagocysis, and disodium cromoglycate and morin were the most active in humoral and cellular immunosuppression, respectively. Daidzuin had the most potent inhibitory activity in the development of memory cells. The structure-activity relationships of the flavonoids in immunosuppression became apparant from these results: 1. The presence of $C_{2-3}$ double bond and $C_4$ Ketone group in C-ring was important for their immunosuppressive activity. 2. Flavonoids with benzene ring at 2 or 3 position in C-ring showed the almost same activities. 3. The opening of C-ring did not affect their immunosuppressive activity. 4. The glycosylated flavonoids at 3 position in C-ring were less less potent than their aglycones. 5. Di-or tri-hydroxylated flavonoids in B-ring were more potent than mono-hydroxylated. 6. Chromanochromanone also had the immunosuppressive activity.

  • PDF

Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages

  • Pureum Lee;Chang-Ung Kim;Sang Hawn Seo ;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.4.1-4.18
    • /
    • 2021
  • The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human health, economy, and social life worldwide. As a counteraction for this devastating disease, a number of vaccines are being developed with unprecedented speed combined with new technologies. As COVID-19 vaccines are being developed in the absence of a licensed human coronavirus vaccine, there remain further questions regarding the long-term efficacy and safety of the vaccines, as well as immunological mechanisms in depth. This review article discusses the current status of COVID-19 vaccine development, mainly focusing on antigen design, clinical trials in later stages, and immunological considerations for further study.

Roles of Virtual Memory T Cells in Diseases

  • Joon Seok;Sung-Dong Cho;Seong Jun Seo;Su-Hyung Park
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.11.1-11.11
    • /
    • 2023
  • Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.

Effects of Cyclophosphamide on Immunological Memory in Mice (Cyclophosphamide가 마우스의 면역기억에 미치는 영향)

  • Park, Young-Min;Park, Yoon-Kyu;Ahn, Woo-Sup;Ha, Tai-You
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.2
    • /
    • pp.175-184
    • /
    • 1987
  • The use of alkylating agent cyclophosphamide(CY), a widely used antitumor drug is well known as a potent immunosuppressant and has been used as a probe for investigating the functional capabilities of lymphocyte subsets of both T and B cells that play an important role in the regulation of the immune response. The present study was undertaken in an effort to assess the effects of CY on immunological memory in murine model. CY, given as a single dose of CY(250mg/kg) before sensitization with sheep red blood cells(SRBC) enhanced the primary response of Arthus and delayed-type hypersensitivity(DTH), as measured by footpad swelling reaction, but suppressed their tertiary DTH response. The similar CY pretreatment enhanced both the primary and tertiary hemagglutinin(HA) responses to SRBC, and the tertiary antibody response against polyvinylpyrroridone(PVP), a thymus-independent antigen but not the primary response against PVP. CY, given as a single dose of 250mg/kg 2 days before the primary immunization and two doses of 100mg/kg 2 days before the secondary and tertiary immunization, markedly suppressed the tertiary DTH and HA responses to SRBC. However, CY, given as small multiple daily doses(10mg/kg) over 4 days before sensitization but not after sensitization, enhanced the secondary HA response to SRBC. Contact sensitivity to dinitrofluorobenzene(DNFB) was suppressed by the drug, given either as a single large dose(300mg/kg) or as multiple dose(10mg/kg) administered 2 days before, together with or after DNFB sensitization. This suppression was more pronounced and more significant when CY was given as multiple dose. However, the enhancement of the secondary contact sensitivity to DNFB by CY was not clear-cut. The splenectomy appears to increase the enhancing effect of CY on contact sensitivity. These results suggest that CY selectively influences the immune response depending on the time of the drug administration relative to immunization and that the secondary or tertiary immune response involve memory cells with different susceptibilities to CY. Moreover, these results suggest that multiple low doses may sesectivley inhibit suppressor T cell proliferation involving DTH, HA or contact sensitivity without effecting helper T cells, but high doses presumably inhibit helper T cells and suppressor T cells with effecting B cells.

  • PDF

The Function of Memory CD8+ T Cells in Immunotherapy for Human Diseases

  • Hanbyeul Choi;Yeaji Kim;Yong Woo Jung
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.10.1-10.16
    • /
    • 2023
  • Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines and therapies to treat human diseases. The remarkable characteristics of Tm cells have led scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing global pandemic. The importance of Tm cells in cancer has been emerging. However, the precise characteristics and functions of Tm cells in these diseases are not completely understood. In this review, we summarize the known characteristics of Tm cells and their implications in the development of vaccines and immunotherapies for human diseases. In addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies for effective vaccines and overcome the obstacles of immunotherapy.

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.

Stimulatory effects of Bordetella bronchiseptica antigen on bone marrow cells and immune memory responses (골수세포에 대한 Bordetella bronchiseptica 항원의 자극 효과 및 면역기억반응)

  • Yim, Seol-Hwa;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • Bone marrow is a hematological and immunological organ that provides multiple immune cells, including B lymphocytes, and thus plays a critical role in the efficacy of vaccine. We previously demonstrated that Bordetella (B.) bronchiseptica antigen has high immunogenicity in spleen cells, a peripheral immune organ. In this study, we investigated the immunogenicity of B. bronchiseptica antigen in bone marrow cells, a central immune organ. B. bronchiseptica antigen increased the cellular activity of bone marrow cells and significantly enhanced the production of nitric oxide, IL-6, and TNF-${\alpha}$. Bone marrow cells primed with B. bronchiseptica antigen in vivo were harvested and stimulated with the same antigen in vitro. The stimulation of B. bronchiseptica antigen significantly increased the cellular activity and proliferation rate of the primed cells. B. bronchiseptica antigen also greatly induced the production of antigen-specific antibody in the primed cells. Taken together, the present study demonstrated that B. bronchiseptica antigen can stimulate bone marrow cells, a central immune organ, and recall the immune response of the primed bone marrow cells.

IL-15 in T-Cell Responses and Immunopathogenesis

  • Hoyoung Lee;Su-Hyung Park;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.11.1-11.18
    • /
    • 2024
  • IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.

Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection

  • Park, Sang June;Lee, Jong Soo;Kwon, Byungsuk;Cho, Hong Rae
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.113-120
    • /
    • 2014
  • Two-signal models are useful in explaining various types of immune responses. In particular, secondary, so-called costimulatory, signals are critically required for the process of T-cell activation, survival, differentiation, and memory formation. Early studies in rodent models showed that targeting T-cell costimulatory pathways elicits immunological tolerance, providing a basis for development of costimulatory therapeutics in allograft rejection. However, as the classic definition of T-cell costimulation continues to evolve, simple blockade of costimulatory pathways has limitations in prevention of allograft rejection. Furthermore, functions of costimulatory molecules are much more diverse than initially anticipated and beyond T cells. In this mini-review, we will discuss CD137-CD137L bidirectional signals as examples showing that two-signals can be applicable to multiple phases of immune responses.