• 제목/요약/키워드: immunocompromised mice

검색결과 23건 처리시간 0.028초

Monitoring Cellular Immune Responses after Consumption of Selected Probiotics in Immunocompromised Mice

  • Kang, Seok-Jin;Yang, Jun;Lee, Na-Young;Lee, Chang-Hee;Park, In-Byung;Park, Si-Won;Lee, Hyeon Jeong;Park, Hae-Won;Yun, Hyun Sun;Chun, Taehoon
    • 한국축산식품학회지
    • /
    • 제42권5호
    • /
    • pp.903-914
    • /
    • 2022
  • Probiotics are currently considered as one of tools to modulate immune responses under specific clinical conditions. The purpose of this study was to evaluate whether oral administration of three different probiotics (Lactiplantibacillus plantarum CJLP243, CJW55-10, and CJLP475) could evoke a cell-mediated immunity in immunodeficient mice. Before conducting in vivo experiments, we examined the in vitro potency of these probiotics for macrophage activation. After co-culture with these probiotics, bone marrow derived macrophages (BMDMs) produced significant amounts of proinflammatory cytokines including interleukin-6 (IL-6), IL-12, and tumor necrosis factor-α (TNF-α). Levels of inducible nitric oxide synthase (inos) and co-stimulatory molecules (CD80 and CD86) were also upregulated in BMDMs after treatment with some of these probiotics. To establish an immunocompromised animal model, we intraperitoneally injected mice with cyclophosphamide on day 0 and again on day 2. Starting day 3, we orally administered probiotics every day for the last 15 d. After sacrificing experimental mice on day 18, splenocytes were isolated and co-cultured with these probiotics for 3 d to measure levels of several cytokines and immune cell proliferation. Results clearly indicated that the consumption of all three probiotic strains promoted secretion of interferon-γ (IFN-γ), IL-1β, IL-6, IL-12, and TNF-α. NK cell cytotoxicity and proliferation of immune cells were also increased. Taken together, our data strongly suggest that consumption of some probiotics might induce cell-mediated immune responses in immunocompromised mice.

밀리타리스 동충하초(Cordyceps militaris) 에탄올 추출물의 면역억제 마우스 면역활성에 미치는 영향 (Immunomodulatory Activities of Ethanol Extract of Cordyceps militaris in Immunocompromised Mice)

  • 김혜주;이태호;권용삼;손미원;김채균
    • 한국식품영양과학회지
    • /
    • 제41권4호
    • /
    • pp.494-500
    • /
    • 2012
  • 본 연구에서는 면역억제 동물모델에서 밀리타리스 동충하초 50% 에탄올 추출물의 면역력 증강 기능을 평가하였다. 이를 위하여 C57BL/6 마우스에 cyclophosphamide를 2회 복강주사 하여 면역력을 억제한 후, 밀리타리스 동충하초 추출물을 30, 100, 300 mg/kg 용량으로 12일간 경구투여 하였다. 마우스를 희생하여 몸무게 및 면역장기 무게, 비장세포의 증식, 비장세포의 cytokine 분비능, NK 세포 활성을 측정하였다. 그 결과, cyclophosphamide 투여에 의한 면역억제는 마우스의 몸무게와 간의 무게에 영향을 주지 않았으나 흉선의 무게는 감소시켰고 비장의 무게는 증가시켰다. 밀리타리스 동충하초 추출물 투여는 마우스의 몸무게 및 면역장기 무게에 영향을 주지 않았다. Cyclophosphamide 투여는 비장세포의 증식능을 감소시켰으며 밀리타리스 동충하초 추출물은 용량 의존적으로 비장세포 증식을 증가시켜 실험에 사용한 전 용량에서 비장세포의 유의적인 증식효과를 보였다. 비장세포의 cytokine 분비능을 측정한 결과, 밀리타리스 동충하초 추출물 투여는 IL-2, IL-12, IFN-${\gamma}$, TNF-${\alpha}$ 같은 Th1 cytokine의 분비를 대조군에 비해 유의적으로 증가시켰으나, IL-4와 IL-10 같은 Th2 cytokine의 분비에는 영향을 미치지 않았다. 또한 cyclophosphamide는 NK 세포의 활성을 정상군에 비하여 유의적으로 감소시켰으며, 밀리타리스 동충하초 추출물 투여는 cyclophosphamide에 의해 저하된 NK 세포 활성을 현저하게 증가시켰다. 이상의 결과를 종합해 볼 때, 밀리타리스 동충하초는 면역력이 억제된 상황에서 면역력을 증강시키며, 이러한 면역력 증강 효과는 체액성 면역보다 세포성 면역력 증강에 기인하는 것으로 보인다.

밀리타리스 동충하초(Cordyceps militaris)의 면역 활성에 미치는 영향 (Effects of Cordyceps militaris on Immune Activity)

  • 강인순;김혜주;이태호;권용삼;손미원;김채균
    • 약학회지
    • /
    • 제58권2호
    • /
    • pp.81-90
    • /
    • 2014
  • In order to determine the functional benefits of Cordyceps militaris in the immune system, we examined the immunomodulatory activities of C. militaris using an immunocompromised C57BL/6 mice, mouse spleen cells, RAW 264.7 macrophage cells, and A549 lung carcinoma cells. Mice were injected intraperitioneally with an immunosuppressive drug, cyclophosphamide, and then administered orally with 30, 100 and 300 mg/kg of 50% ethanol extract of C. militaris (CME 30, CME 100 and CME 300) for 14 days. CME increased splenocyte proliferation and natural killer (NK) cell activity compared to 3% hydroxypropyl methylcellulose-treated control mice. CME also increased the production of Th1 cytokines, IL-2 and TNF-${\alpha}$ in spleen cells isolated from CME-injected mice and in vitro, which suggested the enhanced cellular immunity in response to CME. CME also increased splenocyte proliferation, NK cell activity, and IL-2 and TNF-${\alpha}$ production compared to 1 ${\mu}M$ methotrexate-treated spleen cells in vitro. We examined whether C. militaris regulates the production of inflammatory mediators in LPS-stimulated RAW 264.7 cells. CME inhibited LPS-induced NO production and iNOS expression in a dose dependent manner, while COX-2 expression was remained unchanged. In addition, CME also has free radical scavenging activity, indicating its antioxidant activity. These results indicate that C. militaris enhances immune activity by promoting immune cell proliferation and cytokine production.

돌외 에탄올 추출물의 생체방어력 증진효능 (Augmentation of Immune Responses by Oral Administration of Gynostemma pentaphyllum Ethanol Extract)

  • 임선아;최현숙;황방연;이명구;이종길
    • 생약학회지
    • /
    • 제40권1호
    • /
    • pp.35-40
    • /
    • 2009
  • The immunomodulatory activities of the ethanol extract of Gynostemma pentaphyllum, termed hereafter as GPE, were examined in immunosuppressed mice as well as in normal mice in the present study. Oral administration of GPE into mice prevented dexamethasone (DEX)-induced immunosuppression as determined by the mitogen-induced proliferation of the splenocytes and the the cytokine production (TNF-$\alpha$, IL-$1{\beta}$) in the whole blood culture. In addition, oral administration of GPE increased antitumor host defense in mice implanted with sarcoma-180 tumor cells. The immunoaugmenting activity of orally administered GPE was also confirmed in mice immunized with ovalbumin (OVA). Mice that were orally administered with GPE generated much more potent OVA-specific cytotoxic T lymphocyte (CTL) responses upon intravenous OVA injection compared to the untreated controls. These results demonstrate that oral administration of the ethanol extract of Gynostemma pentaphyllum could be useful to increase host defense in immunocompromised situations such as stress- or tumor-induced immunosuppression.

Cytokine and antibody responses of reactivated murine toxoplasmosis upon administration of dexamethasone

  • Kang Ki-Man;Choi In-Uk;Shin Dae-Whan;Lee Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제44권3호
    • /
    • pp.209-219
    • /
    • 2006
  • Toxoplasma gondii has been shown to result in life-threatening encephalitis in immunocompromised patients after reactivation of dormant parasites. In order to obtain information on immune responses related to this phenomenon, BALB/c mice were infected with 25 cysts of the 76K strain of T. gondii, then, treated orally with dexamethasone (Toxo/Dexa-treated group) in order to reactivate the chronic toxoplasmosis. None of the T. gondii-infected mice died during the experimental periods, whereas the Toxo/Dexa-treated mice evidenced a significant attenuation of survival periods. Toxoplasma-specific IgG2a, IgA and IgM titers in sera were significantly depressed in the Toxo/Dexa-treated mice; however, the IgG1 sera titers were similar to those seen in the Toxoplasma-infected mice. The percentages of CD4+ and $CD8\alpha+$ T cells in the Toxo/Dexa-treated mice were significantly reduced 2 weeks after dexamethasone treatment. $IFN-\gamma$ and IL-10 production levels in the Toxo/Dexa-treated mice were depressed significantly, whereas IL-4 production was increased temporarily. The expression levels of the Toxoplasma-specific P30 and B1 genes were found to have been increased in the Toxo/Dexa-treated mice in comparison with the Toxoplasma-infected mice. Collectively, the findings of this study demonstrate that reactivation of murine toxoplasmosis as the result of dexamethasone treatment induced a depression in Th1 immune responses, whereas Th2 immune responses were not significantly influenced.

The Cancer Stem Cell Theory: Is It Correct?

  • Yoo, Min-Hyuk;Hatfield, Dolph L.
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.514-516
    • /
    • 2008
  • The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

Occurrence of Suppurative Gastritis in BALB/c mice Infected with Listeria monocytogenes via the Intragastric Route

  • Park, Jong-hwan;Park, Jae-hak
    • 한국수의병리학회:학술대회논문집
    • /
    • 한국수의병리학회 2003년도 추계학술대회초록집
    • /
    • pp.6-6
    • /
    • 2003
  • Listeria monocytogenes is a facultative bacterium that cause severe clinical disease including meningoencephalitis, septicaemia, and abortion in pregnant women, newborn infants, the debilitated elderly or immunocompromised people. In preliminary experiments on murine listeriosis we noticed suppurative gastritis in mice infected with L. monocytogenes by the intragastric route. The aims of the present study were ⅰ) to describe the histopathology of the experimentally listeria-induced gastroenteritis ⅱ) to investigate the influence of bacterial strain and laboratory mouse strain on infectivity and on the severity of the infection; [3] to examine possible effects of preliminary intragastric administration of sodium bicarbonate. (omitted)

  • PDF

Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway

  • Jo, Hantae;Oh, Jeong-Hyun;Park, Dong-Wook;Lee, Changho;Min, Churl K.
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.96-104
    • /
    • 2020
  • Objectives: Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods: Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (∆Ψm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results: Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ∆Ψm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate-induced apoptosis in SKOV3 and HEC-1A cells. Conclusion: These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.

Virus-like Particle Vaccine Containing Toxoplasma gondii Rhoptry Protein 13 Induces Protection against T. gondii ME49 Infection in Mice

  • Kang, Hae-Ji;Chu, Ki-Back;Lee, Su-Hwa;Kim, Min-Ju;Park, Hyunwoo;Jin, Hui;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • 제57권5호
    • /
    • pp.543-547
    • /
    • 2019
  • Toxoplasma gondii can infect humans worldwide, causing serious diseases in pregnant women and immunocompromised individuals. T. gondii rhoptry protein 13 (ROP13) is known as one of the key proteins involved in host cell invasion. In this study, we generated virus-like particles (VLPs) vaccine expressing T. gondii rhoptry ROP13 and investigated VLPs vaccine efficacy in mice. Mice immunized with ROP13 VLPs vaccine elicited significantly higher levels of T. gondii-specific IgG, IgG1, IgG2a, and IgA antibody responses following boost immunization and challenge infection, whereas antibody inductions were insignificant upon prime immunization. Differing immunization routes resulted in differing antibody induction, as intranasal immunization (IN) induced greater antibody responses than intramuscular immunization (IM) after boost and challenge infection. IN immunization induced significantly higher levels of IgG and IgA antibody responses from feces, antibody-secreting cells (ASCs), $CD4^+$ T, $CD8^+$ T cells and germinal center B cell responses in the spleen compared to IM immunization. Compared to IM immunization, IN immunization resulted in significantly reduced cyst counts in the brain as well as lesser body weight loss, which contributed to better protection. All of the mice immunized through either route survived, whereas all na?ve control mice perished. These results indicate that the ROP13 VLPs vaccine could be a potential vaccine candidate against T. gondii infection.

Real-Time RT-PCR on SAG1 and BAG1 Gene Expression during Stage Conversion in Immunosuppressed Mice Infected with Toxoplasma gondii Tehran Strain

  • Selseleh, Monavar;Modarressi, Mohammad Hossein;Mohebali, Mehdi;Shojaee, Saeedeh;Eshragian, Mohammad Reza;Selseleh, Mina;Azizi, Ebrahim;Keshavarz, Hossein
    • Parasites, Hosts and Diseases
    • /
    • 제50권3호
    • /
    • pp.199-205
    • /
    • 2012
  • Toxoplasmic encephalitis is caused by reactivation of bradyzoites to rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immunocompromised hosts. Diagnosis of this life-threatening disease is problematic, because it is difficult to discriminate between these 2 stages. Toxoplasma PCR assays using gDNA as a template have been unable to discriminate between an increase or decrease in SAG1 and BAG1 expression between the active tachyzoite stage and the latent bradyzoite stage. In the present study, real-time RT-PCR assay was used to detect the expression of bradyzoite (BAG1)- and tachyzoite-specific genes (SAG1) during bradyzoite/tachyzoite stage conversion in mice infected with T. gondii Tehran strain after dexamethasone sodium phosphate (DXM) administration. The conversion reaction was observed in the lungs and brain tissues of experimental mice, indicated by SAG1 expression at day 6 after DXM administration, and continued until day 14. Bradyzoites were also detected in both organs throughout the study; however, it decreased at day 14 significantly. It is suggested that during the reactivation period, bradyzoites not only escape from the cysts and reinvade neighboring cells as tachyzoites, but also converted to new bradyzoites. In summary, the real-time RT-PCR assay provided a reliable, fast, and quantitative way of detecting T. gondii reactivation in an animal model. Thus, this method may be useful for diagnosing stage conversion in clinical specimens of immunocompromised patients (HIV or transplant patients) for early identification of tachyzoite-bradyzoite stage conversion.