• Title/Summary/Keyword: immune-modulatory

Search Result 93, Processing Time 0.019 seconds

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

Oncolytic Viruses - A New Era for Cancer Therapy (종양 용해성 바이러스-암 치료에서의 새 시대)

  • Ngabire, Daniel;Niyonizigiye, Irvine;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.824-835
    • /
    • 2019
  • In recent decades, oncolytic viruses (OVs) have extensively been investigated as a potential cancer drug. Oncolytic viruses have primarily the unique advantage in the fact that they can only infect and destroy cancer cells. Secondary, oncolytic viruses induce the activation of specific adaptive immunity which targets tumor-associated antigens that were hidden during the initial cancer progression. In 2015, one genetically modified oncolytic virus, talimogene laherparepvec (T-VEC), was approved by the American Food and Drug Administration (FDA) for the treatment of melanoma. Currently, various oncolytic viruses are being investigated in clinical trials as monotherapy or in combination with preexistent cancer therapies like immunotherapy, radiotherapy or chemotherapy. The efficacy of oncolytic virotherapy relies on the balance between the induced anti-tumor immunity and the anti-viral response. Despite the revolutionary outcome, the development of oncolytic viruses for the treatment of cancer faces a number of obstacles such as delivery method, neutralizing antibodies and induction of antiviral immunity due to the complexity, variability and reactivity of tumors. Intratumoral administration has been successful reducing considerably solid tumors with no notable side effects unfortunately some tumors are not accessible (brain) and require a systemic administration of the oncolytic viruses. In order to overcome these hurdles, various strategies to enhance the efficacy of oncolytic viruses have been developed which include the insertion of transgenes or combination with immune-modulatory substances.

Enhancement of Immune Activities of Peptides from Asterias amurensis Using a Nano-encapsulation Process (나노 입자 불가사리 펩타이드의 면역 활성 증진)

  • Jeong, Hyang-Suk;Oh, Sung-Ho;Kim, Seoung-Seop;Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Choi, Geun-Pyo;Kim, Jin-Chul;Lee, Hyeon-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.424-430
    • /
    • 2010
  • Immuno-modulatory activities of peptides from Asterias amurensis were investigated using a nano-encapsulation process. The molecular weights of the peptides in the range of 5-7 kDa were separated using Sephadex G-75 gel filtration. Eighty-five percent of the nano-particles were in the 300 nm range using dynamic light scattering. The cytotoxicity of the A. amurensis nano-particles against CCD-986sk human dermal fibroblast cells was 11.64% after adding 1.0 mg/mL of the samples, which was lower than that from the control (13.28% collagen). The secretion of $NO^-$ from macrophages was estimated as $40\;{\mu}M$ after adding 1.0 mg/mL of gelatin nano-particles, which was higher than the others. Prostaglandin $E_2$ production from UV-induced human skin cells decreased greatly to 860 pg/mL after adding 1.0 mg/mL of the samples. Confocal microscopy revealed that nano-particles effectively penetrated the cells within 1 hour. From these results, we consider that nano-encapsulation of the peptides from A. amurensis can improve their biological functions.