• Title/Summary/Keyword: immune tolerance

Search Result 147, Processing Time 0.024 seconds

Influence of Interferon-${\gamma}$ Deficiency in Immune Tolerance Induced by Male Islet Transplantation

  • Kim, Yong-Hee;Lim, Young-Kyoung;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.358-363
    • /
    • 2011
  • Background: Traditionally, interferon-${\gamma}$ (IFN-${\gamma}$) was regarded as a pro-inflammatory cytokine, however, recent reports suggested role of IFN-${\gamma}$ in immune tolerance. In our previous report, we could induce tolerance to male antigen (HY) just by male islet transplantation in wild type C57BL/6 mice without any immunological intervention. We tried to investigate the influence of IFN-${\gamma}$ deficiency on tolerance induction by male islet transplantation. Methods: To examine the immunogenicity of male tissue in the absence of IFN-${\gamma}$, we transplanted male IFN-${\gamma}$ knock-out (KO) skin to female IFN-${\gamma}$ KO mice. Next, we analyzed male IFN-${\gamma}$ KO islet to streptozotocin-induced diabetic female IFN-${\gamma}$ KO mice. And, we checked the functionality of grafted islet by graft removal and insulin staining. Results: As our previous results in wild type C57BL/6 mice, female IFN-${\gamma}$ KO mice rejected male IFN-${\gamma}$ KO skin within 29 days, and did not reject male IFN-${\gamma}$ KO islet. The maintenance of normal blood glucose level was dependent on the presence of grafted male islet. And the male islet recipient did not reject 2nd challenge of male islet graft also. Conclusion: Deficiency of IFN-${\gamma}$ does not have influence on the result of male skin graft and male islet transplantation. Conclusively, male islet transplantation induced T cell tolerance is not dependent on the presence of IFN-${\gamma}$.

Comparative Study of the Endotoxemia and Endotoxin Tolerance on the Production of Th Cytokines and Macrophage Interleukin-6: Differential Regulation of Indomethacin

  • Chae, Byeong-Suk
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.910-916
    • /
    • 2002
  • Endotoxin tolerance reduces the capacity of monocytes to produce proinflammatory cytokines, results in cellular immune paralysis, and down-regulates the production of helper T (Th)1 type cytokines with a shift toward a Th2 cytokine response. Prostaglandin (PG)E$_2$ in the immune system also results in macrophage inactivation and the suppression of Th1 activation and the enhancement of Th2 activation. However, the inhibitory effects of PGE$_2$ on the altered polarization of the Th cell and macrophage interleukin (IL)-6 production characterized in part by cellular immune paralysis in a state of endotoxin tolerance is unclear. This study was undertaken, using indomethacin, to investigate the role of endogenous PGE$_2$ on the Th cytokines and macrophage IL-6 production in a state of endotoxin tolerance compared to those with endotoxemia mice, wherein, in this latter case, the increased production of proinflammatory cytokines and PGE$_2$ is exhibited. Endotoxemia was induced by injection of lipopolysaccharide (LPS; 10 mg/kg in saline) i.p. once in BALB/c mice, and endotoxin tolerance was induced by pretreatment with LPS (1 mg/kg in saline) injected i.p. daily for two consecutive days and then with LPS 10 mg/kg on day 4. Splenocytes or macrophages were obtained from endotoxemia and endotoxin tolerance models pretreated with indomethacin, and then cytokine production was induced by Con A-stimulated splenocytes for the Th cytokine assays and LPS-stimulated macrophages for the IL-6 assay. Our results showed that endotoxemia led to significantly reduced IL-2 and IL-4 production, to significantly increased IL-6 production, whereas interferon $(IFN)-{\gamma}$ production was not affected. Indomethacin in the case of endotoxemia markedly attenuated $IFN-{\gamma}$ and IL-6 production and didnt reverse IL-2 and IL-4 production. Endotoxin tolerance resulted in the significantly reduced production of IL-2 and $IFN-{\gamma}$ and the significantly increased production of IL-4 and IL-6. Indomethacin in endotoxin tolerance greatly augmented IL-2 production, significantly decreased IL-4 production, and slightly attenuated IL-6 production. These findings indicate that endogenous PGE$_2$ may mediate the suppressed Th1 type immune response, with a shift toward a Th2 cytokine response in a state of endotoxin tolerance, whereas endotoxemia may be regulated differentially. Also, endogenous PGE$_2$ may mediate macrophage IL-6 production in the case of endotoxemia to a greater extent than in the case of endotoxin tolerance.

HY 항원 불일치 췌도 이식에 의한 면역 관용의 유도 (Immune Tolerance in Murine Islet Transplantation Across HY Disparity)

  • 최승은;박정규
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.53-59
    • /
    • 2004
  • Background: Minor histocompatibility HY antigen, as a transplantation antigen, has been known to cause graft rejection in MHC (major histocompatibility complex) matched donor-recipient. The aim of our study is to investigate the role of male antigen (HY) disparity on MHC matched pancreatic islet transplantation and to examine the mechanism of the immune reaction. Methods: Pancreatic islets were isolated and purified by collagen digestion followed by Ficoll gradient. The isolated islets of male C57BL6/J were transplanted underneath the kidney capsule of syngeneic female mice rendered diabetic with streptozotocine. Blood glucose was monitored for the rejection of engrafted islets. After certain period of time, tail to flank skin transplantation was performed either on mouse transplanted with HY mismatched islets or on sham treated mouse. The rejection was monitored by scoring gross pathology of the engrafted skin. Results: HY mismatched islets survived more than 300 days in 14 out of 15 mice. The acceptance of second party graft (male B6 islets) and the rejection of third party graft (male BALB/c islets) in these mice suggested the tolerance to islets with HY disparity. B6 Skin with HY disparity was rejected on day $25{\pm}7$. However, HY mismatched skin transplanted on the mice tolerated to HY mismatched islets survived more than 240 days. Tetramer staining in these mice indicated the CTL recognizing MHC Db/Uty was not deleted or anergized. Conclusion: The islet transplantation across HY disparity induced tolerance to HY antigen in C57BL6 mouse, which in turn induced tolerance to HY mismatched skin, which otherwise would be rejected within 25 days. The MHC tetramer staining suggested the underlying mechanisms would not be clonal deletion or anergy.

The Role of Plasmacytoid Dendritic Cells in Gut Health

  • Hye-Yeon Won;Ju-Young Lee;Dahye Ryu;Hyung-Taek Kim;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • 제19권1호
    • /
    • pp.6.1-6.14
    • /
    • 2019
  • Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.

경구백신의 효율적인 적용을 위한 면역 보조제 개발 (Development of adjuvant for effective oral vaccine application)

  • 김새해;서기원;김주;장용석
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.283-291
    • /
    • 2010
  • Vaccine is one of the best known and most successful applications of immunological theory to human health and it protects human life through inducing the immune response in systemic compartment. However, when we consider the fact that mucosal epithelium is exposed to diverse foreign materials including viruses, bacteria, and food antigens and protects body from entry of unwanted materials using layer of tightly joined epithelial cells, establishing the immunological barrier on the lining of mucosal surfaces is believed to be an effective strategy to protect body from unwanted antigens. Unfortunately, however, oral mucosal site, which is considered as the best target to induce mucosal immune response due to application convenience, is prone to induce immune tolerance rather than immune stimulation. Since intestinal epithelium is tightly organized, a prerequisite for successful mucosal vaccination is delivery of antigen to mucosal immune induction site including a complex system of highly specialized cells such as M cells. Consequently, development of efficient mucosal adjuvant capable of introducing antigens to mucosal immune induction site and overcome oral tolerance is an important subject in oral vaccine development. In this review, various approaches on the development of oral mucosal adjuvants being suggested for effective oral mucosal immune induction.

Construction of Glomerular Epithelial Cells Expressing Both Immune Tolerance and GFP Genes and Application to Cell Therapy by Cell Transplantation

  • Ohga, Masahiro;Ogura, Mariko;Matsumura, Mastoshi;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.303-310
    • /
    • 2002
  • Cell therapy applied to wound healing or tissue regeneration presents a revolutionary realm to which principles of gene engineering and delivery may be applied. One promising application is the transplantation of cells into the wounded tissue to help the tissue repair. However, when cells are transplanted from in vitro to in vivo, immune rejection occurs due to the immune response triggered by the activation of T-cell, and the transplanted cells are destroyed by the attack of activated T-cell and lose their function. Immune suppressant such as FK506 is commonly used to suppress immune rejection during transplantation. However, such kind of immune suppressants not only suppresses immune rejection in the periphery of transplanted cells but also suppresses whole immune response system against pathogenic infection. In order to solve this problem, we developed a method to protect the desired cells from immune rejection without impairing whole immune system during cell transplantation. Previously, we reported the success of constructing glomerular epithelial cells for removal of immune complex, in which complement receptor of type 1 (CR1) was over-expressed on the membrane of renal glomerular epithelial cells and could bind immune complex of DNA/anti-DNA-antibody to remove immune complex through phagocy-tosis [1]. Attempting to apply the CR1-expressing cells to cell therapy and evade immune rejection during cell transplantation, we constructed three plasmids containing genes encoding a soluble fusion protein of cytolytic T lymphocyte associated antigen-4 (CTLA4Ig) and an enhanced green fluorescent protein (EGFP). The plasmids were transfected to the above-mentioned glomerular epithelial cells to express both genes simultaneously. Using the clone cells for cell transplantation showed that mice with autoimmune disease prolonged their life significantly as compared with the control mice, and two injections of the cells at the beginning of two weeks resulted in remarkable survivability, whereas it requires half a year and 50 administrations of proteins purified from the same amount of cells to achieve the same effect.

Hormonal regulation of uterine chemokines and immune cells

  • Park, Dong-Wook;Yang, Kwang-Moon
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제38권4호
    • /
    • pp.179-185
    • /
    • 2011
  • The ultimate function of the endometrium is to allow the implantation of a blastocyst and to support pregnancy. Cycles of tissue remodeling ensure that the endometrium is in a receptive state during the putative 'implantation window', the few days of each menstrual cycle when an appropriately developed blastocyst may be available to implant in the uterus. A successful pregnancy requires strict temporal regulation of maternal immune function to accommodate a semi-allogeneic embryo. To preparing immunological tolerance at the onset of implantation, tight temporal regulations are required between the immune and endocrine networks. This review will discuss about the action of steroid hormones on the human endometrium and particularly their role in regulating the inflammatory processes associated with endometrial receptivity.

Recent Advances in Cell Therapeutics for Systemic Autoimmune Diseases

  • Youngjae Park;Seung-Ki Kwok
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.10.1-10.17
    • /
    • 2022
  • Systemic autoimmune diseases arise from loss of self-tolerance and immune homeostasis between effector and regulator functions. There are many therapeutic modalities for autoimmune diseases ranging from conventional disease-modifying anti-rheumatic drugs and immunosuppressants exerting nonspecific immune suppression to targeted agents including biologic agents and small molecule inhibitors aiming at specific cytokines and intracellular signal pathways. However, such current therapeutic strategies can rarely induce recovery of immune tolerance in autoimmune disease patients. To overcome limitations of conventional treatment modalities, novel approaches using specific cell populations with immune-regulatory properties have been attempted to attenuate autoimmunity. Recently progressed biotechnologies enable sufficient in vitro expansion and proper manipulation of such 'tolerogenic' cell populations to be considered for clinical application. We introduce 3 representative cell types with immunosuppressive features, including mesenchymal stromal cells, Tregs, and myeloid-derived suppressor cells. Their cellular definitions, characteristics, mechanisms of immune regulation, and recent data about preclinical and clinical studies in systemic autoimmune diseases are reviewed here. Challenges and limitations of each cell therapy are also addressed.

Treatment of Autoimmune Diabetes by Inhibiting the Initial Event

  • Lee, Myung-Shik
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.194-198
    • /
    • 2013
  • Recent papers have shown that the initial event in the pathogenesis of autoimmune type 1 diabetes (T1D) comprises sensing of molecular patterns released from apoptotic ${\beta}$-cells by innate immune receptors such as toll-like receptor (TLR). We have reported that apoptotic ${\beta}$-cells undergoing secondary necrosis called 'late apoptotic' ${\beta}$-cells stimulate dendritic cells (DCs) and induce diabetogenic T cell priming through TLR2. The role of other innate immune receptors such as TLR7 or TLR9 in the initiation of T1D has also been suggested. We hypothesized that TLR2 blockade could inhibit T1D at the initial step of T1D. Indeed, when a TLR2 agonist, $Pam3CSK_4$ was administered chronically, the development of T1D in nonobese diabetic (NOD) mice was inhibited. Diabetogenic T cell priming by DCs was attenuated by chronic treatment with $Pam3CSK_4$, indicating DC tolerance. For the treatment of established T1D, immune tolerance alone is not enough because ${\beta}$-cell mass is critically reduced. We employed TLR2 tolerance in conjunction with islet transplantation, which led to reversal of newly established T1D. Dipeptidyl peptidase 4 (DPP4) inhibitors are a new class of anti-diabetic agents that have beneficial effects on ${\beta}$-cells. We investigated whether a combination of DPP4 inhibition and TLR2 tolerization could reverse newly established T1D without islet transplantation. We could achieve normoglycemia by TLR2 tolerization in combination with DPP4 inhibition but not by TLR2 tolerization or DPP4 inhibition alone. ${\beta}$-cell mass was significantly increased by combined treatment with TLR2 tolerization and DPP4 inhibition. These results suggest the possibility that a novel strategy of TLR tolerization will be available for the inhibition or treatment of established T1D when combined with measures increasing critically reduced ${\beta}$-cell mass of T1D patients such as DPP4 inhibition or stem cell technology.

Immune Cells in the Female Reproductive Tract

  • Lee, Sung Ki;Kim, Chul Jung;Kim, Dong-Jae;Kang, Jee-Hyun
    • IMMUNE NETWORK
    • /
    • 제15권1호
    • /
    • pp.16-26
    • /
    • 2015
  • The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus in the upper tract. The immune system is significantly influenced by sex steroid hormones, although leukocytes in the reproductive tract lack receptors for estrogen and progesterone. The leukocytes in the reproductive tract are distributed in either an aggregated or a dispersed form in the epithelial layer, lamina propria, and stroma. Even though immune cells are differentially distributed in each organ of the reproductive tract, the predominant immune cells are T cells, macrophages/dendritic cells, natural killer (NK) cells, neutrophils, and mast cells. B cells are rare in the female reproductive tract. NK cells in the endometrium significantly expand in the late secretory phase and further increase their number during early pregnancy. It is evident that NK cells and regulatory T (Treg) cells are extremely important in decidual angiogenesis, trophoblast migration, and immune tolerance during pregnancy. Dysregulation of endometrial/decidual immune cells is strongly related to infertility, miscarriage, and other obstetric complications. Understanding the immune system of the female reproductive tract will significantly contribute to women's health and to success in pregnancy.