• Title/Summary/Keyword: immune tolerance

Search Result 143, Processing Time 0.027 seconds

Clinical Characteristics and Treatment of Immune-Related Adverse Events of Immune Checkpoint Inhibitors

  • Juwhan Choi;Sung Yong Lee
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.9.1-9.21
    • /
    • 2020
  • Immune checkpoint inhibitors (ICIs) have been changing the paradigm of cancer treatment. However, immune-related adverse effects (irAEs) have also increased with the exponential increase in the use of ICIs. ICIs can break up the immunologic homeostasis and reduce T-cell tolerance. Therefore, inhibition of immune checkpoint can lead to the activation of autoreactive T-cells, resulting in various irAEs similar to autoimmune diseases. Gastrointestinal toxicity, endocrine toxicity, and dermatologic toxicity are common side effects. Neurotoxicity, cardiotoxicity, and pulmonary toxicity are relatively rare but can be fatal. ICI-related gastrointestinal toxicity, dermatologic toxicity, and hypophysitis are more common with anti- CTLA-4 agents. ICI-related pulmonary toxicity, thyroid dysfunction, and myasthenia gravis are more common with PD-1/PD-L1 inhibitors. Treatment with systemic steroids is the principal strategy against irAEs. The use of immune-modulatory agents should be considered in case of no response to the steroid therapy. Treatment under the supervision of multidisciplinary specialists is also essential, because the symptoms and treatments of irAEs could involve many organs. Thus, this review focuses on the mechanism, clinical presentation, incidence, and treatment of various irAEs.

A New Immunotronic Approach to Hardware Fault Detection Using Symbiotic Evolution (공생 진화를 이용한 Immunotronic 접근 방식의 하드웨어 오류 검출)

  • Lee, Sang-Hyung;Kim, Eun-Tai;Lee, Hee-Jin;Park, Mignon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.59-68
    • /
    • 2005
  • A novel immunotronic approach to fault detection in hardware based on symbiotic evolution is proposed in this paper. In the immunotronic system, the generation of tolerance conditions corresponds to the generation of antibodies in the biological immune system. In this paper, the principle of antibody diversity, one of the most important concepts in the biological immune system, is employed and it is realized through symbiotic evolution. Symbiotic evolution imitates the generation of antibodies in the biological immune system morethan the traditional GA does. It is demonstrated that the suggested method outperforms the previous immunotronic methods with less running time. The suggested method is applied to fault detection in a decade counter (typical example of finite state machines) and MCNC finite state machines and its effectiveness is demonstrated by the computer simulation.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.735-748
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

A Biologically Inspired New Hardware Fault Detection: immunotronic and Genetic Algorithm-Based Approach

  • Lee, Sanghyung;Kim, Euntai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • This paper proposes a new immunotronic approach for the fault detection in hardware. The suggested method is, inspired by biology and its implementation is based on genetic algorithm. Tolerance conditions in the immunotronic system for fault detection correspond to the antibodies in the biological immune system. A novel algorithm of generating tolerance conditions is suggested based on the principle of the antibody diversity and GA optimization is employed to select mature tolerance conditions in immunotronic fault detection system. The suggested method is applied to the fault detection for MCNC benchmark FSMs (finite state machines) and its effectiveness is demonstrated by the computer simulation.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Immune Evasion Mechanism as a Guide for Immunotherapy in Head and Neck Cancer (두경부암에서 면역회피 기전과 면역항암제 치료)

  • Chang, Hyun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer globally with high morbidity and mortality. Immune surveillance is well recognized as an important mechanism to prevent development or progression of HNSCC. HNSCC can escape the immune system through multiple mechanisms including development of tolerance in T cells and inhibition of T-cell-related pathways, generally referred to as checkpoint inhibitors. Recent clinical trials have demonstrated a clear advantage in advanced HNSCC patients treated with immune checkpoint blockade. Right at the front of the new era of immunotherapy, we will review current knowledge of immune escape mechanisms and clinical implication for HNSCC.

Interplay between Inflammatory Responses and Lymphatic Vessels

  • Shin, Kihyuk;Lee, Seung-Hyo
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.182-186
    • /
    • 2014
  • Lymphatic vessels are routes for leukocyte migration and fluid drainage. In addition to their passive roles in migration of leukocytes, increasing evidence indicates their active roles in immune regulation. Tissue inflammation rapidly induces lymphatic endothelial cell proliferation and chemokine production, thereby resulting in lymphangiogenesis. Furthermore, lymphatic endothelial cells induce T cell tolerance through various mechanisms. In this review, we focus on the current knowledge on how inflammatory cytokines affect lymphangiogenesis and the roles of lymphatic vessels in modulating immune responses.

Cholera Toxin Disrupts Oral Tolerance via NF-κB-mediated Downregulation of Indoleamine 2,3-dioxygenase Expression

  • Kim, Kyoung-Jin;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.175-184
    • /
    • 2017
  • Cholera toxin (CT) is an ADP-ribosylating bacterial exotoxin that has been used as an adjuvant in animal studies of oral immunization. The mechanisms of mucosal immunogenicity and adjuvanticity of CT remain to be established. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), which participates in the induction of immune tolerance, in CT-mediated breakdown of oral tolerance. When IDO-deficient ($IDO^{-/-}$) mice and their littermates were given oral ovalbumin, significant changes in antibody responses, footpad swelling and $CD4^+$ T cell proliferation were not observed in $IDO^{-/-}$ mice. Feeding of CT decreased IDO expression in mesenteric lymph nodes (MLN) and Peyer's patch (PP). CT-induced downregulation of IDO expression was reversed by inhibitors of nuclear factor-kappa B (NF-${\kappa}B$), pyrrolidine dithiocarbamate and p50 small interfering RNA. IDO expression was downregulated by the NF-${\kappa}B$ inducers lipopolysaccharide and tumor necrosis factor-${\alpha}$. CT dampened IDO activity and mRNA expression in dendritic cells from MLN and PP. These data indicate that CT disrupts oral tolerance by activating NF-${\kappa}B$, which in turn downregulates IDO expression. This study betters the understanding of the molecular mechanism underlying CT-mediated abrogation of oral tolerance.

Fault Tolerance Design of Uplink Command Processor (상향링크 명령 처리기의 결함 허용 설계)

  • Gu, Cheol Hoe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.95-100
    • /
    • 2003
  • Electronic equipment used in satellites are demanding extremely high reliability, so they should be designed to have immunity for some critical faults by using redundancy component. Generally, Communication satellites are assigned to meet the 15 years mission lifetime, of the analysis about faults must be performed to electronic equipments of satellite. This paper is a summary of the fault tolerance design research of command processor, the improvement of reliability and trade-off study of fault tolerance design result. The reliability prediction value of the satellite component used in this research was taken from Koreasat 3 and Kompsat 1. It is important to perform many trade-off studies for fault tolerance design, especially to choose the most proper fault tolerance method for the specified fault scenario.

Induction of Oral Tolerance by Gamma-Irradiated Ovalbumin Administration

  • Yang, Hui;Lee, Junglim;Seo, Ji Hyun;Oh, Kwang Hoon;Cho, Young Ho;Yoo, Yung Choon
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.14-18
    • /
    • 2016
  • Oral administration of soluble antigen can induce peripheral tolerance to the antigen. This study was conducted to evaluate whether gamma-irradiated ovalbumin (OVA) can induce oral tolerance. To investigate this, we administrated intact or irradiated OVA to mice, induced allergic response using intact OVA and alum, then compared humoral and cellular immune responses. Mice treated with gammairradiated OVA had less OVA-specific IgE compared with those who were administered intact OVA. There was no difference in levels of OVA-specific IgG+A+M, IgG1, and IgG2a. Splenocytes of mice administered irradiated OVA showed similar OVA-specific T cell proliferation and secretion of IFN-γ and IL-4. However, there was an increase in IL-2 and a decrease of IL-6 secretion in mice treated with irradiated OVA. These results indicate that gamma-irradiated OVA have similar effects to intact OVA on antigen tolerance.