Browse > Article
http://dx.doi.org/10.4110/in.2014.14.4.182

Interplay between Inflammatory Responses and Lymphatic Vessels  

Shin, Kihyuk (Department of Medicine, Pusan National University Hospital)
Lee, Seung-Hyo (Graduate School of Medical Science and Engineering, and Biomedical Research Center, and KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
IMMUNE NETWORK / v.14, no.4, 2014 , pp. 182-186 More about this Journal
Abstract
Lymphatic vessels are routes for leukocyte migration and fluid drainage. In addition to their passive roles in migration of leukocytes, increasing evidence indicates their active roles in immune regulation. Tissue inflammation rapidly induces lymphatic endothelial cell proliferation and chemokine production, thereby resulting in lymphangiogenesis. Furthermore, lymphatic endothelial cells induce T cell tolerance through various mechanisms. In this review, we focus on the current knowledge on how inflammatory cytokines affect lymphangiogenesis and the roles of lymphatic vessels in modulating immune responses.
Keywords
Lymphangiogenesis; Lymphatic vessels; Inflammation; Immune responses;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cueni, L. N., and M. Detmar. 2008. The lymphatic system in health and disease. Lymphat. Res. Biol. 6: 109-122.   DOI   ScienceOn
2 Adams, R. H., and K. Alitalo. 2007. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8: 464-478.   DOI   ScienceOn
3 Oliver, G. 2004. Lymphatic vasculature development. Nat. Rev. Immunol. 4: 35-45.   DOI   ScienceOn
4 Oliver, G., and K. Alitalo. 2005. The lymphatic vasculature: recent progress and paradigms. Annu. Rev. Cell Dev. Biol. 21: 457-483.   DOI   ScienceOn
5 Cueni, L. N., and M. Detmar. 2006. New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Iinvest. Dermatol. 126: 2167-2177.   DOI   ScienceOn
6 Schulte-Merker, S., A. Sabine, and T. V. Petrova. 2011. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 193: 607-618.   DOI   ScienceOn
7 Pflicke, H., and M. Sixt. 2009. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206: 2925-2935.   DOI   ScienceOn
8 Alitalo, K., T. Tammela, and T. V. Petrova. 2005. Lymphangiogenesis in development and human disease. Nature 438: 946-953.
9 He, Y., I. Rajantie, K. Pajusola, M. Jeltsch, T. Holopainen, S. Yla-Herttuala, T. Harding, K. Jooss, T. Takahashi, and K. Alitalo. 2005. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 65: 4739-4746.   DOI   ScienceOn
10 Achen, M. G., and S. A. Stacker. 2006. Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int. J. Cancer 119: 1755-1760.   DOI   ScienceOn
11 Kataru, R. P., K. Jung, C. Jang, H. Yang, R. A. Schwendener, J. E. Baik, S. H. Han, K. Alitalo, and G. Y. Koh. 2009. Critical role of $CD11b^+$ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113: 5650-5659.   DOI   ScienceOn
12 Jeltsch, M., A. Kaipainen, V. Joukov, X. Meng, M. Lakso, H. Rauvala, M. Swartz, D. Fukumura, R. K. Jain, and K. Alitalo. 1997. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276: 1423-1425.   DOI   ScienceOn
13 Furtado, G. C., T. Marinkovic, A. P. Martin, A. Garin, B. Hoch, W. Hubner, B. K. Chen, E. Genden, M. Skobe, and S. A. Lira. 2007. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc. Natl. Acad. Sci. U. S. A. 104: 5026-5031.   DOI   ScienceOn
14 Makinen, T., T. Veikkola, S. Mustjoki, T. Karpanen, B. Catimel, E. C. Nice, L. Wise, A. Mercer, H. Kowalski, D. Kerjaschki, S. A. Stacker, M. G. Achen, and K. Alitalo. 2001. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20: 4762-4773.   DOI   ScienceOn
15 Wirzenius, M., T. Tammela, M. Uutela, Y. He, T. Odorisio, G. Zambruno, J. A. Nagy, H. F. Dvorak, S. Yla-Herttuala, M. Shibuya, and K. Alitalo. 2007. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J. Exp. Med. 204: 1431-1440.   DOI   ScienceOn
16 Halin, C., H. Fahrngruber, J. G. Meingassner, G. Bold, A. Littlewood-Evans, A. Stuetz, and M. Detmar. 2008. Inhibition of chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosine kinase inhibitor. Am. J. Pathol. 173: 265-277.   DOI   ScienceOn
17 Mounzer, R. H., O. S. Svendsen, P. Baluk, C. M. Bergman, T. P. Padera, H. Wiig, R. K. Jain, D. M. McDonald, and N. H. Ruddle. 2010. Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 116: 2173-2182.   DOI   ScienceOn
18 Choi, I., Y. S. Lee, H. K. Chung, D. Choi, T. Ecoiffier, H. N. Lee, K. E. Kim, S. Lee, E. K. Park, Y. S. Maeng, N. Y. Kim, R. D. Ladner, N. A. Petasis, C. J. Koh, L. Chen, H. J. Lenz, and Y. K. Hong. 2013. Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration. Angiogenesis 16: 29-44.   DOI
19 Cao, R., H. Ji, N. Feng, Y. Zhang, X. Yang, P. Andersson, Y. Sun, K. Tritsaris, A. J. Hansen, S. Dissing, and Y. Cao. 2012. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc. Natl. Acad. Sci. U. S. A. 109: 15894-15899.   DOI
20 Saito, Y., H. Nakagami, R. Morishita, Y. Takami, Y. Kikuchi, H. Hayashi, T. Nishikawa, K. Tamai, N. Azuma, T. Sasajima, and Y. Kaneda. 2006. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114: 1177-1184.   DOI   ScienceOn
21 Platonova, N., G. Miquel, B. Regenfuss, S. Taouji, C. Cursiefen, E. Chevet, and A. Bikfalvi. 2013. Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 121: 1229-1237.   DOI   ScienceOn
22 Chang, L. K., G. Garcia-Cardena, F. Farnebo, M. Fannon, E. J. Chen, C. Butterfield, M. A. Moses, R. C. Mulligan, J. Folkman, and A. Kaipainen. 2004. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc. Natl. Acad. Sci. U. S. A. 101: 11658-11663.   DOI   ScienceOn
23 Chauhan, S. K., Y. Jin, S. Goyal, H. S. Lee, T. A. Fuchsluger, H. K. Lee, and R. Dana. 2011. A novel pro-lymphangiogenic function for Th17/IL-17. Blood 118: 4630-4634.   DOI   ScienceOn
24 Kataru, R. P., H. Kim, C. Jang, D. K. Choi, B. I. Koh, M. Kim, S. Gollamudi, Y. K. Kim, S. H. Lee, and G. Y. Koh. 2011. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34: 96-107.   DOI   ScienceOn
25 Avraham, T., S. Daluvoy, J. Zampell, A. Yan, Y. S. Haviv, S. G. Rockson, and B. J. Mehrara. 2010. Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am. J. Pathol. 177: 3202-3214.   DOI   ScienceOn
26 Oka, M., C. Iwata, H. I. Suzuki, K. Kiyono, Y. Morishita, T. Watabe, A. Komuro, M. R. Kano, and K. Miyazono. 2008. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111: 4571-4579.   DOI   ScienceOn
27 Forster, R., A. Braun, and T. Worbs. 2012. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 33: 271-280.   DOI   ScienceOn
28 Vigl, B., D. Aebischer, M. Nitschke, M. Iolyeva, T. Rothlin, O. Antsiferova, and C. Halin. 2011. Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118: 205-215.   DOI   ScienceOn
29 Lammermann, T., B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Soldner, K. Hirsch, M. Keller, R. Forster, D. R. Critchley, R. Fassler, and M. Sixt. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453: 51-55.   DOI   ScienceOn
30 Johnson, L. A., S. Clasper, A. P. Holt, P. F. Lalor, D. Baban, and D. G. Jackson. 2006. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J. Exp. Med. 203: 2763-2777.   DOI   ScienceOn
31 Issa, A., T. X. Le, A. N. Shoushtari, J. D. Shields, and M. A. Swartz. 2009. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res. 69: 349-357.   DOI   ScienceOn
32 Martln-Fontecha, A., S. Sebastiani, U. E. Hopken, M. Uguccioni, M. Lipp, A. Lanzavecchia, and F. Sallusto. 2003. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198: 615-621.   DOI   ScienceOn
33 Kabashima, K., N. Shiraishi, K. Sugita, T. Mori, A. Onoue, M. Kobayashi, J. Sakabe, R. Yoshiki, H. Tamamura, N. Fujii, K. Inaba, and Y. Tokura. 2007. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171: 1249-1257.   DOI   ScienceOn
34 Johnson, L. A., and D. G. Jackson. 2013. The chemokine CX3CL1 promotes trafficking of dendritic cells through in flamed lymphatics. J. Cell Sci. 126: 5259-5270.   DOI   ScienceOn
35 Tewalt, E. F., J. N. Cohen, S. J. Rouhani, C. J. Guidi, H. Qiao, S. P. Fahl, M. R. Conaway, T. P. Bender, K. S. Tung, A. T. Vella, A. J. Adler, L. Chen, and V. H. Engelhard. 2012. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120: 4772-4782.   DOI
36 Norder, M., M. G. Gutierrez, S. Zicari, E. Cervi, A. Caruso, and C. A. Guzman. 2012. Lymph node-derived lymphatic endothelial cells express functional costimulatory molecules and impair dendritic cell-induced allogenic T-cell proliferation. FASEB J. 26: 2835-2846.   DOI
37 Amatschek, S., E. Kriehuber, W. Bauer, B. Reininger, P. Meraner, A. Wolpl, N. Schweifer, C. Haslinger, G. Stingl, and D. Maurer. 2007. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Blood 109: 4777-4785.   DOI   ScienceOn
38 Tripp, C. H., B. Haid, V. Flacher, M. Sixt, H. Peter, J. Farkas, R. Gschwentner, L. Sorokin, N. Romani, and P. Stoitzner. 2008. The lymph vessel network in mouse skin visualised with antibodies against the hyaluronan receptor LYVE-1. Immunobiology 213: 715-728.   DOI   ScienceOn
39 Lund, A. W., F. V. Duraes, S. Hirosue, V. R. Raghavan, C. Nembrini, S. N. Thomas, A. Issa, S. Hugues, and M. A. Swartz. 2012. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1: 191-199.   DOI   ScienceOn
40 Lee, J. W., M. Epardaud, J. Sun, J. E. Becker, A. C. Cheng, A. R. Yonekura, J. K. Heath, and S. J. Turley. 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8: 181-190.
41 Nichols, L. A., Y. Chen, T. A. Colella, C. L. Bennett, B. E. Clausen, and V. H. Engelhard. 2007. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J. Immunol. 179: 993-1003.   DOI
42 Harding, F. A., J. G. McArthur, J. A. Gross, D. H. Raulet, and J. P. Allison. 1992. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356: 607-609.   DOI   ScienceOn
43 Gardner, J. M., J. J. Devoss, R. S. Friedman, D. J. Wong, Y. X. Tan, X. Zhou, K. P. Johannes, M. A. Su, H. Y. Chang, M. F. Krummel, and M. S. Anderson. 2008. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321: 843-847.   DOI   ScienceOn
44 Hernandez, J., S. Aung, K. Marquardt, and L. A. Sherman. 2002. Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens. J. Exp. Med. 196: 323-333.   DOI
45 Cohen, J. N., C. J. Guidi, E. F. Tewalt, H. Qiao, S. J. Rouhani, A. Ruddell, A. G. Farr, K. S. Tung, and V. H. Engelhard. 2010. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207: 681-688.   DOI   ScienceOn
46 Fletcher, A. L., V. Lukacs-Kornek, E. D. Reynoso, S. E. Pinner, A. Bellemare-Pelletier, M. S. Curry, A. R. Collier, R. L. Boyd, and S. J. Turley. 2010. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207: 689-697.   DOI   ScienceOn
47 Hawiger, D., K. Inaba, Y. Dorsett, M. Guo, K. Mahnke, M. Rivera, J. V. Ravetch, R. M. Steinman, and M. C. Nussenzweig. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194: 769-779.   DOI   ScienceOn
48 Martin-Orozco, N., Y. H. Wang, H. Yagita, and C. Dong. 2006. Cutting Edge: Programmed death (PD) ligand-1/PD-1 interaction is required for $CD8^+$ T cell tolerance to tissue antigens. J. Immunol. 177: 8291-8295.   DOI
49 Liu, X., M. Alexiou, N. Martin-Orozco, Y. Chung, R. I. Nurieva, L. Ma, Q. Tian, G. Kollias, S. Lu, D. Graf, and C. Dong. 2009. Cutting edge: A critical role of B and T lymphocyte attenuator in peripheral T cell tolerance induction. J. Immunol. 182: 4516-4520.   DOI   ScienceOn