• Title/Summary/Keyword: immune response.

Search Result 2,304, Processing Time 0.027 seconds

Development of adjuvant for effective oral vaccine application (경구백신의 효율적인 적용을 위한 면역 보조제 개발)

  • Kim, Sae-Hae;Seo, Ki-Weon;Kim, Ju;Jang, Yong-Suk
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.283-291
    • /
    • 2010
  • Vaccine is one of the best known and most successful applications of immunological theory to human health and it protects human life through inducing the immune response in systemic compartment. However, when we consider the fact that mucosal epithelium is exposed to diverse foreign materials including viruses, bacteria, and food antigens and protects body from entry of unwanted materials using layer of tightly joined epithelial cells, establishing the immunological barrier on the lining of mucosal surfaces is believed to be an effective strategy to protect body from unwanted antigens. Unfortunately, however, oral mucosal site, which is considered as the best target to induce mucosal immune response due to application convenience, is prone to induce immune tolerance rather than immune stimulation. Since intestinal epithelium is tightly organized, a prerequisite for successful mucosal vaccination is delivery of antigen to mucosal immune induction site including a complex system of highly specialized cells such as M cells. Consequently, development of efficient mucosal adjuvant capable of introducing antigens to mucosal immune induction site and overcome oral tolerance is an important subject in oral vaccine development. In this review, various approaches on the development of oral mucosal adjuvants being suggested for effective oral mucosal immune induction.

Metabolic reprogramming of the tumor microenvironment to enhance immunotherapy

  • Seon Ah Lim
    • BMB Reports
    • /
    • v.57 no.9
    • /
    • pp.388-399
    • /
    • 2024
  • Immunotherapy represents a promising treatment strategy for targeting various tumor types. However, the overall response rate is low due to the tumor microenvironment (TME). In the TME, numerous distinct factors actively induce immunosuppression, restricting the efficacy of anticancer immune reactions. Recently, metabolic reprogramming of tumors has been recognized for its role in modulating the tumor microenvironment to enhance immune cell responses in the TME. Furthermore, recent elucidations underscore the critical role of metabolic limitations imposed by the tumor microenvironment on the effectiveness of antitumor immune cells, guiding the development of novel immunotherapeutic approaches. Hence, achieving a comprehensive understanding of the metabolic requirements of both cancer and immune cells within the TME is pivotal. This insight not only aids in acknowledging the current limitations of clinical practices but also significantly shapes the trajectory of future research endeavors in the domain of cancer immunotherapy. In addition, therapeutic interventions targeting metabolic limitations have exhibited promising potential as combinatory treatments across diverse cancer types. In this review, we first discuss the metabolic barriers in the TME. Second, we explore how the immune response is regulated by metabolites. Finally, we will review the current strategy for targeting metabolism to not simply inhibit tumor growth but also enhance antitumor immune responses. Thus, we could suggest potent combination therapy for improving immunotherapy with metabolic inhibitors.

Isotyping of Immunoglobulin G Responses of Ruminants and Mice to Live and Inactivated Antigens of Cowdria ruminantium the Causative Agent of Cowdriosis in Ruminants

  • Kibor, A.C.;Sumption, K.J.;Paxton, E.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.541-548
    • /
    • 2003
  • The Immunoglobulin $IgG_1$ and $IgG_2$ isotype immune responses of domestic ruminants and mice to Cowdria. ruminantium live infection or by immunization with inactivated organisms were determined by the enzyme linked immunosorbent assay and Western blotting. Immunization of goats with inactivated elementary bodies (IEBs) led to a predominant $IgG_1$ isotype response. This indicated that a Th2 response was induced. After challenge, the IgG isotype responses were mixed whereby both $IgG_1$ and $IgG_2$ antibodies were detected. Two goats that survived virulent challenge had a predominant $IgG_2$ isotype response. In cattle live infection by natur l challenge or experiment led to a predominant $IgG_1$ isotype response. Immunization of cattle with IEBs however led to mixed IgG responses characterized by similar $IgG_1$ and $IgG_2$ ratios. In the mouse live infection led to a predominant $IgG_2$ isotype response. This indicated the mouse developed a true Th1 type cell mediated immune response when inoculated with live organisms. Immunization with inactivated organisms on the other hand led to a dominant $IgG_1$ response. It is evident from this work that the immune responses of ruminants and mice to C. ruminantium are different and that using mice as the experimental model for immune responses to Cowdria ruminantium. is not the appropriate.

Phenotype Changes in Immune Cell Activation in Obesity (비만 환경 내 면역세포 활성화 표현형의 변화)

  • Ju-Hwi Park;Ju-Ock Nam
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • Immune and metabolic systems are important factors in maintaining homeostasis. Immune response and metabolic regulation are highly associated, so, when the normal metabolism is disturbed, the immune response changed followed the metabolic diseases occur. Likewise, obesity is highly related to immune response. Obesity, which is caused by an imbalance in energy metabolism, is associated with metabolic diseases, such as insulin resistance, type 2 diabetes, fatty liver diseases, atherosclerosis and hypertension. As known, obesity is characterized in chronic low-grade inflammation. In obesity, the microenvironment of immune cells became inflammatory by the unique activation phenotypes of immune cells such as macrophage, natural killer cell, T cell. Also, the immune cells interact each other in cellular or cytokine mechanisms, which intensify the obesity-induced inflammatory response. This phenomenon suggests the possibility of regulating the activation of immune cells as a pharmacological therapeutic strategy for obesity in addition to the common pharmacological treatment of obesity which is aimed at inhibiting enzymes such as pancreatic lipase and α-amylase or inhibiting differentiation of preadipocytes. In this review, we summarize the activation phenotypes of macrophage, natural killer cell and T cell, and their aspects in obesity. We also summarize the pharmacological substances that alleviates obesity by regulating the activation of immune cells.

The Effects of High-dose Vitamin C Administration on the Cell-mediated Immune Response in Mice (다용량 비타민 C 투여가 생쥐 세포매개면역반응에 미치는 영향)

  • Noh, Kahwa;Kim, Heun-gon;Shin, Young-ah;Lim, Hyunja;Mun, Sung-kyu;Lee, Yongtaek;Lee, Wang Jae;Lee, Dongsup;Hwang, Young-il
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.211-218
    • /
    • 2003
  • Background: Vitamin C is an essential nutrient, taken as a daily supplement by many people. Recently, high-dose vitamin C is considered as a therapeutic regimen in some clinical situations. Until now, few studies have been done with the effects of high-dose vitamin C on the immune response. Methods: In this experiment, the effects of high-dose vitamin C on cell-mediated immune response in immunologically competent mice were evaluated. After intraperitoneal injection of 2.5, 5, or 10 mg/day of vitamin C for 10 days, delayed type hypersensitivity (DTH) was provoked against DNFB in the pinnae as a model for cell-mediated immune response. Severity of DTH reaction was evaluated as the thickness of pinnae, and the vitamin C levels were measured in the serum, liver, kidney, lung, pinnae, and splenocytes. Results: After challenge, the thickness increased at its peak on the $2^{nd}$ day in all groups. On the first day, the pinnae were thicker in the injected groups than in the control. On the contrary, the increment of the pinnae thickness was attenuated and the number of cells infiltrated in the site of DTH decreased proportionately to the amount of vitamin C administered from the second day on. With vitamin C exogenously given, the serum level peaked at 30 min after injection, and returned abruptly to its basal level without accumulation. However, it accumulated in the liver, kidney, and especially in the pinnae inflamed and splenopcytes, proportionately to the amount administered. Conclusion: Based on these results, it is suggested that, in one hand, exogenously administered high-dose vitamin C accumulated in the splenocytes and presumably changed the function of them resulting in the augmented cell-mediated immune response, as was revealed in the first day of DTH reaction. On the other hand, it seems likely that the vitamin C also showed anti-inflammatory effects.

The Effect of Ginseng Saponin on the Mouse Immune System (생쥐의 면역계에 미치는 인삼 사포닌의 영향)

  • 김미정;정노팔
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.130-135
    • /
    • 1987
  • To detect the effect of ginseng saponin on the immune response, mice were immunized with a protein antigen (gamma-globulin of chick). Blood was then drawn from them twice, after 10 days of the first immunization and after 10 days of the second immunization respectively, and measurements were made by ELISA method of the antibody titer in antiserum. In addition, mice that has been immunized with the same antigen were treated with immunosuppressor to suppress the immune system of the mice. After the immune system was suppressed, the effect of ginseng saponin on the recovery of immune response was measured by the same method. The experimental groups those were given ginseng saponin (10 mg/kg/day) showed a little variance between-individuals, however showed much higher antibody titer than the control groups those were given the saline solution. Moreover, there was a little recovery from the immune suppression. Although the mechanism of the effect of ginseng saponin on immune response was not well loom, it is believed that ginseng saponin has the effect of increasing the synthesis of serum protein together with its action as one of the immunostimulators.

  • PDF

Cathelicidin-related Antimicrobial Peptide Contributes to Host Immune Responses Against Pulmonary Infection with Acinetobacter baumannii in Mice

  • Min-Jung Kang;Ah-Ra Jang;Ji-Yeon Park;Jae-Hun Ahn;Tae-Sung Lee;Dong-Yeon Kim;Do-Hyeon Jung;Eun-Jung Song;Jung Joo Hong;Jong-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.20 no.3
    • /
    • pp.25.1-25.13
    • /
    • 2020
  • Acinetobacter baumannii is known for its multidrug antibiotic resistance. New approaches to treating drug-resistant bacterial infections are urgently required. Cathelicidin-related antimicrobial peptide (CRAMP) is a murine antimicrobial peptide that exerts diverse immune functions, including both direct bacterial cell killing and immunomodulatory effects. In this study, we sought to identify the role of CRAMP in the host immune response to multidrug-resistant Acinetobacter baumannii. Wild-type (WT) and CRAMP knockout mice were infected intranasally with the bacteria. CRAMP-/- mice exhibited increased bacterial colony-forming units (CFUs) in bronchoalveolar lavage (BAL) fluid after A. baumannii infection compared to WT mice. The loss of CRAMP expression resulted in a significant decrease in the recruitment of immune cells, primarily neutrophils. The levels of IL-6 and CXCL1 were lower, whereas the levels of IL-10 were significantly higher in the BAL fluid of CRAMP-/- mice compared to WT mice 1 day after infection. In an in vitro assay using thioglycollate-induced peritoneal neutrophils, the ability of bacterial phagocytosis and killing was impaired in CRAMP-/- neutrophils compared to the WT cells. CRAMP was also essential for the production of cytokines and chemokines in response to A. baumannii in neutrophils. In addition, the A. baumannii-induced inhibitor of κB-α degradation and phosphorylation of p38 MAPK were impaired in CRAMP-/- neutrophils, whereas ERK and JNK phosphorylation was upregulated. Our results indicate that CRAMP plays an important role in the host defense against pulmonary infection with A. baumannii by promoting the antibacterial activity of neutrophils and regulating the innate immune responses.

Preclinical Study on Biodistribution of Mesenchymal Stem Cells after Local Transplantation into the Brain

  • Narayan Bashyal;Min Gyeong Kim;Jin-Hwa Jung;Rakshya Acharya;Young Jun Lee;Woo Sup Hwang;Jung-Mi Choi;Da-Young Chang;Sung-Soo Kim;Haeyoung Suh-Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 2023
  • Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

Immunomodulatory Response Induced by Ginseng

  • Kumar, Ashok
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.115-119
    • /
    • 2003
  • There has been continuing interest in the development of synthetic and natural compounds that modify the immune response particularly for the treatment of AIDS and cancer. During the past fifty years, numerous scientific studies have been published on ginseng. Modem human studies have investigated preventive effect of ginseng on several kinds of cancer, its long term immunological effect on HIV patients, its effect on cell mediated immune functions in healthy volunteers. Similarly non clinical studies on animal model system have studied the chemopreventive action of ginseng on cancer and immunological properties of ginseng. The precise mechanism of action of ginseng, however, not clearly understood. Considering its wide-ranging therapeutic effects, this study is being undertaken to elucidate the general mode of action of ginseng, especially to test our hypothesis that its biological action may be mediated by the immune system.

Effect of Bojunglkgi-tang on the Specific Immune Response in BALB/c Mice (보중익기탕이 생쥐의 특이적 면역반응에 미치는 영향)

  • Eun Jae Soon;Chai Hoon;Song Jung Ma
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.943-947
    • /
    • 2002
  • The purpose of this research was to investigate the effects of Bojunglkgi-tang water extract (BE) on the specific immune response in BALB/c mice. When BE (500mg/kg) was administerd p.o. once a day for 7 days to BALB/c mice, the cell viability of splenocytes was increased and DNA fragmentation of splenocytes was decreased. But, BE did not affect the cell viability and DNA fragmentation of thymocytes. Also, BE increased the population of Thy1/sup +/ cells and TH cells in splenocytes. In addition, BE increased the production of γ -interferon from splenocytes. These results suggest that BE enhances the specific immune response via activation of TH1 cells in splenocytes.