• 제목/요약/키워드: immune modulating activity

검색결과 82건 처리시간 0.028초

유산균을 이용한 대두 발효 추출물이 면역계 활성에 미치는 영향 (Effects of soybean extracts fermented with Lactic acid bacteria on immune system activity)

  • 박병두;김혜자
    • 대한예방한의학회지
    • /
    • 제16권3호
    • /
    • pp.139-153
    • /
    • 2012
  • Objectives : NK cells are spontaneously cytotoxic lymphocytes. These are not only important parts in the first line of defence against bacterial and viral infections of outside, but they may also play a critical role in chronic viral diseases. NK cells kill their targets spontaneously, without the need for prior sensitization and class I MHC restriction by the regulation of cytolytic functions and secretion of a variety of cytokines, such as interleukin-12(IL-12), MCP-1, IL-6, TNF-${\alpha}$, IFN-${\gamma}$. In addition, macrophage and NK cells cooperate through the production of cell mediates. These cooperation and modulation are one of major factors to prevent for evading immune surveillance of cancer. Hence, it could be assumed that if any candidate to enhance activities of macrophage and NK cell, it is considered as a potentially useful agents against cancer. Methods : In our study, to investigate effect of fermented soybean extracts by Lactic acid bacteria (SFE, soybean fermented extracts) work on intestinal immune cell to maintain general immune modulating and anti-cancer activity. We analyzed NK cytotoxicity assay and gene expressions of cytokine related with macrophage and NK cell activity. Results : In vitro experiment, SFE was verified as safety material for cell toxicicty to tumor cell strain without any toxicity of tumor growth inhibition and various cell strain. Effects of macrophage activity stimulating directly by SFE measured induced cytokine. The studies showed that IL-12 production by stimulation of SFE depended on concentration from 0.16mg/mL to 0.63mg/mL with non toxicity to cell, and it was the best activity at 0.63mg/mL. Besides, the effective concentration of SFE producing TNF-${\alpha}$ is similar to IL-12, but it was the best activity at 1.25mg/mL. The level of MCP-1, IL-6 and IFN-${\gamma}$ depended on concentration from 0.16mg/mL to 10mg/mL, IFN-${\gamma}$ showed the best activity at the effective concentration of 0.63mg/mL. With the result of NK cell activity measurement, the spleen cell of mouse injected SFE had 1.5 times higher killing effect than non injected cell. Conclusions : The result of this studies is that Soybean fermetated extracts(SFE) has possibility to immune aided material for the function not only inhibition of microbial infection to macrophage but also activity of adaption immune and cellular immune system.

Porphyromonas gingivalis biofilm에 대한 면역혈청의 침투력에 대한 Fusobacterium nucleatum의 조절효과 (Fusobacterium nucleatum modulates serum binding to Porphyromonas gingivalis biofilm)

  • 최점일;김성조;김수진
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.661-668
    • /
    • 2001
  • P. gingivalis를 단독면역하거나 또는 Fusobacterium nucleatum 선면역 후 P. gingivalis 항혈청을 각각 얻어냈다. 두 종류의 항혈청이 P. gingivalis biofilm을 침투해 들어가는 능력을 confocal laser scanning microscope를 이용하여 비교 감증하였다. 항혈청의 P. gingivalis에 대한 avidity index도 측정하였다. 결과적으로 F. nucleatum의 선면역은 P. gingivalis 특이 항혈청에 대해 세균성 biofilm의 침투능력을 저하시키고, 동일한 세균에 대한 avidity도 감소시켰다.

  • PDF

N-acetylcysteine modulates cyclophosphamide-induced immunosuppression, liver injury, and oxidative stress in miniature pigs

  • Kang, Kyung Soo;Shin, Sangsu;Lee, Sang In
    • Journal of Animal Science and Technology
    • /
    • 제62권3호
    • /
    • pp.348-355
    • /
    • 2020
  • Cyclophosphamide, a cytotoxic anticancer agent, induces immunosuppression and has several adverse effects. N-acetylcysteine alleviates oxidative stress, liver injury, and intestinal tissue damage. The present study examined whether N-acetylcysteine modulates the adverse effects of cyclophosphamide in pigs. Miniature pigs (n = 15) were used as an experimental model to evaluate the effects of N-acetylcysteine treatment on immune reactions, liver injury, and oxidative stress after cyclophosphamide challenge. Corn-soybean meal based dietary treatments were as follows: control diet with either saline injection, cyclophosphamide injection, or 0.5% N-acetylcysteine and cyclophosphamide injection. N-acetylcysteine increased the number of immune cells and decreased TNF-α production after cyclophosphamide injection and decreased TNF-α, IFN-γ, NF-κB, and IL-8 expression and increased IL-10 expression in peripheral blood mononuclear cells. Serum levels of alanine transaminase and aspartate aminotransferase decreased, superoxide dismutase activity increased, and malondialdehyde activity decreased following N-acetylcysteine treatment after cyclophosphamide injection. N-acetylcysteine decreases immunosuppression, liver injury, and oxidative stress in cyclophosphamide-challenged miniature pigs. The present study suggests that N-acetylcysteine has therapeutic application in livestock for modulating immune reactions, liver injury, and oxidative stress.

The effect of bee pollen and its flavonoids on immune-modulating in mice

  • Jia Bak;Il Kyung Chung;Yun-Sik Choi
    • 한국응용과학기술학회지
    • /
    • 제40권5호
    • /
    • pp.955-964
    • /
    • 2023
  • Bee pollen is a valuable apitherapeutic product and has been known to have diverse biological activities, including antimicrobial, anti-inflammatory, and even anticancer activity. However, its effect on the immune system is not well studied and is rather controversial. This study intended to elucidate the biological activity of bee pollen on immunity. For this purpose, we used lyophilized bee pollen after wet grinding, which shows increased extraction of bioactive components and enhanced biological activity. First, lyophilized bee pollen after wet grinding significantly increased the proliferation of splenocytes isolated from normal mice. On the other hand, lyophilized bee pollen after wet grinding dose-dependently reversed splenocyte proliferation by concanavalin A or lipopolysaccharide. To clarify the activity of bee pollen on immunity lyophilized bee pollen after wet grinding was administered daily to mice for five weeks and isolated splenocytes. In this study, there was no significant difference in the population of immune cells and the size of spleen between bee pollen- and sterile water-treated groups. However, proliferation of splenocyte isolated from bee pollen-administered animals was boosted by both concanavalin A and lipopolysaccharide. Finally, kaempferol, a well-known flavonoid from bee pollen, dose-dependently increased splenocyte proliferation by both Con A and LPS. On the other hand, naringenin, another flavonoid in the bee pollen, dose-dependently inhibited the proliferation of splenocytes by Con A and LPS. Together, these data indicate that bee pollen may be able to prime the immunity to boost immune reaction after inflammation.

Pharmacological Activities of the Mycelial Extract of Cultured Cordyceps sinensis

  • Koh, Jong-Ho;Yu, Kwang-Won;Suh, Hyung-Joo;Ahn, Tae-Seok
    • Journal of Applied Biological Chemistry
    • /
    • 제44권2호
    • /
    • pp.77-83
    • /
    • 2001
  • For defining the possibilities of the commercial mass liquid culture of Cordyceps sinensis, the pharmacological activities of mycelia were analyzed. The mycelium of C. sinensis consists of carbohydrate (5.1%) and fat (1.3%), and contains a low content of protein (0.7%) and ash (0.5%), and 92.4% moisture. The molecular sugar ratio of carbohydrate was composed mainly of glucose, mannose (1.0 : 0.9), in addition a small amount of galactose and arabinose (0.2 : 0.1). The cellular materials of mycelia were fractionated into ethylacetate (EA), MeOH (M) and hot-water extract fraction (HW). HW fraction showed the most potent intestinal immune system modulating activity, anti-coagulant activity, and anti-complementary activity, and M fraction had the inhibition activity of radical generation as effective as genistine. These results reveal that the mycelium of liquid cultured C. sinensis showed pharmacological activities and could be used for commercial purpose.

  • PDF

프리바이오틱스 최신 연구 현황 및 제품 개발 동향 (Prebiotics: An overview of current researches and industrial applications)

  • 황혜원;이동우
    • 식품과학과 산업
    • /
    • 제52권3호
    • /
    • pp.241-260
    • /
    • 2019
  • Prebiotics are defined as substrates that are selectively utilized by host microorganisms conferring various health benefits. Current prebiotic researches not only focus on non-digestible oligosaccharides, but also extend to polyphenols and peptides. However, the extended scope of prebiotic research pertains its original purposes: promotion of beneficial bacteria in host guts and production of valuable metabolites. Maintenance of optimal gut microflora plays a key role in host health care benefits including anti-cancer activity, immune response modulation, blood lipid level reduction, increased mineral absorption, and weight loss. With increasing probiotics markets, prebiotics have also received much attention in functional food markets. Hence, many global food companies tempt to develop new prebiotics applicable for preventing human diseases as well as modulating immune system. In this review, we discuss current status of prebiotics research, market progress, and future perspectives of prebiotics.

Hydroquinone, a Reactive Metabolite of Benzene, Reduces Macrophage-mediated Immune Responses

  • Lee, Ji Yeon;Kim, Joo Young;Lee, Yong Gyu;Shin, Won Cheol;Chun, Taehoon;Rhee, Man Hee;Cho, Jae Youl
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.198-206
    • /
    • 2007
  • Hydroquinone is a toxic compound and a major benzene metabolite. We report that it strongly inhibits the activation of macrophages and associated cells. Thus, it suppressed the production of proinflammatory cytokines [tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, IL-3, IL-6, IL-10, IL-12p40, IL-23], secretion of toxic molecules [nitric oxide (NO) and reactive oxygen species (ROS)] and the activation and expression of CD29 as judged by cell-cell adhesion and surface staining experiments. The inhibition was due to the induction of heme oxygenase (HO)-1 in LPS-activated macrophages, since blocking HO-1 activity with ZnPP, an HO-1 specific inhibitor, abolished hydroquinone's NO inhibitory activity. In addition, hydroquinone and inhibitors (wortmannin and LY294002) of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway had very similar inhibitory effects on LPS-induced and CD29-mediated macrophage responses, including the phoshorylation of Akt. Therefore, our data suggest that hydroquinone inhibits macrophage-mediated immune responses by modulating intracellular signaling and protective mechanisms.

Modulatory Effects of Chrysanyhemi Flos Pharmacopuncture on Nitric-oxide (NO) Production in Murin Macrophagy Cells

  • Shin, Hwa-Young;Lee, Hyun-Jong;Lee, Yun-Kyu;Lim, Seong-Chul;Kim, Jae-Soo
    • 대한약침학회지
    • /
    • 제15권1호
    • /
    • pp.29-33
    • /
    • 2012
  • Objectives: Much evidence exists that herbs have effective immunomodulatory activities. Chrysanthemi Flos (CF) is effective in clearing heat, reducing inflammation, dropping blood pressure and treating headache and is used as a pharmaceutical raw material for an immune enhancer. The purpose of this study was to investigate the modulatory effect of Chrysanthemi Flos pharmacopuncture on nitric-oxide (NO) production in activating macrophages. Methods: After a murine macrophage cell line, RAW 264.7, was cultured in the presence of lipopolysaccharide (LPS), immune-modulating abilities of CF were evaluated by using NO, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-${\alpha}$) production and phagocytic activity of macrophages. Results: CF enhanced the activities of macrophages by increasing the phagocytic activity and decreasing NO production. Especially, both LPS and CF, 200 ${\mu}g/ml$, treatment could significantly reduce the NO production, but did not change the production of IL-6 and TNF-${\alpha}$. Conclusion: The results of this study indicate that CF may be of immunomodulatory value, especially for adverse diseases due to increased NO production. It may have potential for use as immunoenhancing pharmacopuncture.

족삼리(足三里)의 전침자극(電鍼刺戟)이 흰쥐의 중추신경계(中樞神經系)에서 Interleukin-6 의 활성(活性)에 미치는 영향(影響) -구심성(求心性) 체감각(體感覺) 정보전달(情報傳達)을 중심(中心)으로- (Differential Modulation of ST36 Stimulation on Interleukin-6-Induced Changes of Afferent Somatosensory Transmissionto the SI Cortex of Rats)

  • 이혜정;신형철;진수희;손양선;윤동학;임사비나
    • Journal of Acupuncture Research
    • /
    • 제17권4호
    • /
    • pp.41-50
    • /
    • 2000
  • Objectives : Acupuncture is expected to have somewhat like the efficacy parallel increasing activity of immune system in Western modem medicine. There, already, are many animal researches on activating effect of acupuncture for the immune system in peripheral organs. So, we carried out this experiment to see whether acupuncture has controlling effect on interleukin-6(IL-6) activity in rat's brain. Methods and Results : We had topical application of IL-6(1U=lpg, $10{\mu}l$) on brain of rat. It reduced afferent sensory transmission to the primary somatosensory(SI) cortex from periphery. Whereas, electrical stimulation(ES, 2Hz, 1.5V, 15min) of ST36(足三里) with application of IL-6 prominently activated afferent sensory transmission. ES of non-acupoint(proximal tail) with IL-6 showed suppression of afferent transmission. ES of ST36 without IL-6 application also exerted facilitation of afferent transmission to the SI cortex. Conclusions : Electoacupuncture(EA) on ST36 has noticeable influences on modulating activation of IL-6 in central nervous system, which do major role in immune system.

  • PDF