• Title/Summary/Keyword: immune functions

Search Result 582, Processing Time 0.031 seconds

Induction of Apoptosis by N-nitrosocarbofuran, via Cytochrome c-Mediated Activation of Caspase-3 protease

  • Lee, Bang-Wool;Oh, Seon-Hee;Lee, Byung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.158.1-158.1
    • /
    • 2003
  • Carbofuran(CF) is one of the most widely used carbamate pesticides in the world applied for insect and nematode control. Due to its widespread use in agriculture and households, contamination of food, water, and air has become serious, and consequently adverse health effects are inevitable in humans, animals, wildlife and fish, it has reported that CF alone or in combination with other carbamate insecticides influences the level of reproductive and metabolic hormones such as thyroxine and corticosterone, and results in impairment of endocrine, immune behavioral functions. (omitted)

  • PDF

Inhibitory mechanism of cyclohexylimminobenzoxathiol LYR-64 compound on LPS- induced NO production

  • Kim, Byung-Hak;Min, Kyung-Rak;Lee, Yong-Rok;Kim, Young-Soo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.149.2-149.2
    • /
    • 2003
  • Nitric oxide (NO) is known to work as an important signaling molecule involved in regulating a wide range of biological activities in the neuronal, vascular, and immune system. NO and its metabolites mediate a number of host defence functions and are also implicated in the pathogenesis of tissue damage associated with inflammation. Cyclohexylimminobenzoxathiol LYR-64 compound inhibited LPS-induced NO production in murine macrophages Raw264.7 with an IC50 value of 0.7 uM with 95.9% inhibition at 3 uM, 63.5% at 1 uM and 30.2% at 1 uM. (omitted)

  • PDF

Effect of porcine testis-derived glycosaminoglycans on blood coagulation and immune responses

  • Yoo, Yung-Choon;Lee, Kyung-Box
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.327.1-327.1
    • /
    • 2002
  • Glycosaminoglycans(PT -Gag) were isolated from the porcine testis. From the PT -Gag, we obtained two different types of Gag fractions using Dowex macro porous Resin MSA-1 column, PT -Gag-1.5% NaCl and PT -Gag-16% NaCl. Various biological activities of the GAGs were examined in aspect of anticoagulant and immunomodulating activity. The anticoagulant activity of the GAGs was evaluated by activated partial thromboplastin time (aPTT ) assay and thrombin time (TT) assay. The GAGs of porcine testis markedly incresed the clotting times of both of aPTT and TT. showing that PT-Gag-16% NaCl was more effective than PT-Gag-1.5% NaCl. The immunomodulating activityof the GAGs was examined in relation to regulation of xytoxine prodution of murine peritoeal maerophages. Taken together. GAGs isolated from porcine testis possess bilolgical functions such as anticoagulant and immunomodulating activity.

  • PDF

Therapeutic application of extracellular vesicles for various kidney diseases: a brief review

  • Lee, Sul A;Yoo, Tae Hyun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.3-10
    • /
    • 2022
  • Extracellular vesicles (EVs) released from different types of kidney cells under physiologic conditions contribute to homeostasis maintenance, immune-modulation, and cell-to-cell communications. EVs can also negatively affect the progression of renal diseases through their pro-inflammatory, pro-fibrotic, and tumorigenic potential. Inhibiting EVs by blocking their production, release, and uptake has been suggested as a potential therapeutic mechanism based on the significant implication of exosomes in various renal diseases. On the other hand, stem cell-derived EVs can ameliorate tissue injury and mediate tissue repair by ameliorating apoptosis, inflammation, and fibrosis while promoting angiogenesis and tubular cell proliferation. Recent advancement in biomedical engineering technique has made it feasible to modulate the composition of exosomes with diverse biologic functions, making EV one of the most popular drug delivery tools. The objective of this review was to provide updates of recent clinical and experimental findings on the therapeutic potential of EVs in renal diseases and discuss the clinical applicability of EVs in various renal diseases.

Strategies for Manipulating T Cells in Cancer Immunotherapy

  • Lee, Hyang-Mi
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.299-308
    • /
    • 2022
  • T cells are attractive targets for the development of immunotherapy to treat cancer due to their biological features, capacity of cytotoxicity, and antigen-specific binding of receptors. Novel strategies that can modulate T cell functions or receptor reactivity provide effective therapies, including checkpoint inhibitor, bispecific antibody, and adoptive transfer of T cells transduced with tumor antigen-specific receptors. T cell-based therapies have presented successful pre-clinical/clinical outcomes despite their common immune-related adverse effects. Ongoing studies will allow us to advance current T cell therapies and develop innovative personalized T cell therapies. This review summarizes immunotherapeutic approaches with a focus on T cells. Anti-cancer T cell therapies are also discussed regarding their biological perspectives, efficacy, toxicity, challenges, and opportunities.

Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration

  • Chaeryeong Lim;Jooyoung Lim;Sekyu Choi
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.573-578
    • /
    • 2023
  • The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.

RNA Metabolism in T Lymphocytes

  • Jin Ouk Choi;Jeong Hyeon Ham;Soo Seok Hwang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.39.1-39.18
    • /
    • 2022
  • RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.

Optimising IL-2 for Cancer Immunotherapy

  • Jonathan Sprent;Onur Boyman
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.5.1-5.19
    • /
    • 2024
  • The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.

The Function of Memory CD8+ T Cells in Immunotherapy for Human Diseases

  • Hanbyeul Choi;Yeaji Kim;Yong Woo Jung
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.10.1-10.16
    • /
    • 2023
  • Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines and therapies to treat human diseases. The remarkable characteristics of Tm cells have led scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing global pandemic. The importance of Tm cells in cancer has been emerging. However, the precise characteristics and functions of Tm cells in these diseases are not completely understood. In this review, we summarize the known characteristics of Tm cells and their implications in the development of vaccines and immunotherapies for human diseases. In addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies for effective vaccines and overcome the obstacles of immunotherapy.

Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging

  • Yanzhi Wang;Feng Gao
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.871-889
    • /
    • 2023
  • C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.