• Title/Summary/Keyword: immobilized fermentation

Search Result 92, Processing Time 0.028 seconds

Ethanol Production by Immobilized Kluyveromyces marxianus FO43 Using Jerusalem Artichoke Powder (돼지감자 분말을 이용한 고정화 Kluyveromyces marxianus FO43의 에탄올 발효특성)

  • Lee, Hee-Suk;Choi, Eon-Ho
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.26-30
    • /
    • 1995
  • To produce ethanol from Jerusalem artichoke powder efficiently, Kluyveromyces marxianus FO43 cells were encapsulated in 2% sodium alginate and were cultured in batch reactor to investigate the fermentation properties. Batch culture of immobilized cells left for 4 days in 15% Jerusalem artichoke medium showed ethanol concentration of 3.38%(w/v) and ethanol yield to theoretical value of 54.20%, lower than 3.76%(w/v) and 71.13% for the culture of free cells. Addition of cellulase to $15{\sim}20%$ Jerusalem artichoke media increased the production of ethanol, owing to remarkable reduction in consistency of the suspension. So it was possible to achieve an ethanol concentration of 5.57%(w/v) arid an ethanol yield to theoretical value of 68.86% in even 20% Jerusalem artichoke medium by cultivation of immobilized cells for 4 days. The alginate beads showed constant ethanol productivity after recycling 11 times (22 days) in repeated batch fermentation.

  • PDF

Continuous Ethanol Production from Starch by Simultaneous Saccharification and Fermentation in a Tapered Column Fermentor (역원추형 발효조에서의 동시당화발효에 의한 전분으로 부터의 연속 에탄올 발효)

  • 김철호;유연우김철이상기
    • KSBB Journal
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 1990
  • In an attempt to develop a novel process for ethanol production from starch, a simultaneous saccharification and fermentation (SSF) process using Zymomonas mobilis and amyloglucosidase (AMG) was studied in continuous modes. Compared with a conventional cylindrical column type of fermentor, the tapered column type of fermentor was found to be superior in terms of reactor performance for ethanol fermentation. The tapered columm fermentor packed with coimmobilized Z. mobilis and AMG alleviated the problems which were associated with CO2 evolution and provided a significantly better flow pattern for both liquid and gas phases in the fermentor without channelling. However, the fluidized bed type of tapered column fermentor using flocculent strain of Z. mobiles and immobilized AMG showed lower productivity (5.2g/1/h) than that of packed bed type of tapered column fermentor(9.2g/l/h).

  • PDF

Enhanced Production of Epothilone by Immobilized Sorangium cellulosum in Porous Ceramics

  • Gong, Guo-Li;Huang, Yu-Ying;Liu, Li-Li;Chen, Xue-Feng;Liu, Huan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1653-1659
    • /
    • 2015
  • Epothilone, which is produced by the myxobacterium Sorangium cellulosum, contributes significant value in medicinal development. However, under submerged culture conditions, S. cellulosum will accumulate to form bacterial clumps, which hinder nutrient and metabolite transportation. Therefore, the production of epothilone by liquid fermentation is limited. In this study, diatomite-based porous ceramics were made from diatomite, paraffin, and poremaking agent (saw dust). Appropriate methods to modify the porous ceramics were also identified. After optimizing the preparation and modification conditions, we determined the optimal prescription to prepare high-performance porous ceramics. The structure of porous ceramics can provide a solid surface area where S. cellulosum can grow and metabolize to prevent the formation of bacterial clumps. S. cellulosum cells that do not form clumps will change their erratic metabolic behavior under submerged culture conditions. As a result, the unstable production of epothilone by this strain can be changed in the fermentation process, and the purpose of increasing epothilone production can be achieved. After 8 days of fermentation under optimized conditions, the epothilone yield reached 90.2 mg/l, which was increased four times compared with the fermentation without porous ceramics.

Laccase Production Using Pleurotus ostreatus 1804 Immobilized on PUF Cubes in Batch and Packed Bed Reactors: Influence of Culture Conditions

  • Prasad K. Krishna;Mohan S. Venkata;Bhaskar Y. Vijaya;Ramanaiah S. V.;Babu V. Lalit;Pati B. R.;Sarma P. N.
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.301-307
    • /
    • 2005
  • The feasibility of laccase production by immobilization of Pleurotus ostreatus 1804 on polyurethane foam (PUF) cubes with respect to media composition was studied in both batch and reactor systems. Enhanced laccase yield was evidenced due to immobilization. A relatively high maximum laccase activity of 312.6 U was observed with immobilized mycelia in shake flasks compared to the maximum laccase activity of free mycelia (272.2 U). It is evident from this study that the culture conditions studied, i.e. biomass level, pH, substrate concentration, yeast extract concentration, $Cu^{2+}$ concentration, and alcohol nature, showed significant influence on the laccase yield. Gel electrophoretic analysis showed the molecular weight of the laccase produced by immobilized P. ostreatus to be 66 kDa. The laccase yield was significantly higher and more rapid in the packed bed reactor than in the shake flask experiments. A maximum laccase yield of 392.9 U was observed within 144 h of the fermentation period with complete glucose depletion.

Isolation of Glucose Isomerase Hyperproducing Strain, Streptomyces sp. SM 805 and Its Enzymatic Properties

  • Kim, Hong-Rip
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.78-84
    • /
    • 1992
  • Streptomyces sp. No.8, which produced glucose isomerase was isolated from soil samples. The isolated strain, No.8, was identified as belonging to the Genus Streptomyces. A mutant strain, SM 805, showed the greatest ability to produce glucose isomerase. It was developed from the strain, No.8, by mutagenesis induced by NTG and UV treatment. The mutant strain, SM 805, produced about 7 times more glucose isomerase than the parental strain, No.8. This enzyme catalyzed the isomerization of D-xylose, D-glucose and D-ribose. It was inactive in the absence of metal ions, but was activated by the addition of $Mg^{2+}$ or $Co^{2+}$. The optimum temperature and pH for enzyme activity were $80^\circ{C}$ and pH 8.5, respectively. The enzyme was stable in a pH range of 6.0 to 10.0, and it was highly thermostable. There was no activity loss below $80^\circ{C}$, and even above $90^\circ{C}$ about 45% of its activity was retained. The reaction equilibrium was reached when about 53% fructose was present in the reaction mixture. Whole cells containing glucose isomerase from Streptomyces sp. SM 805 were immobilized by glutaraldehyde treatment. The resultant immobilized enzyme pellets showed a relatively long stability during the isomerizing reaction. The half-life of the immobilized enzyme during the operating was 45 days in the presence of 10mM $Mg^{2+}$.

  • PDF

Ethanol Production from Glycerol by the Yeast Pachysolen tannophilus Immobilized on Celite during Repeated-Batch Flask Culture

  • Cha, Hye-Geun;Kim, Yi-Ok;Lee, Hyeon-Yong;Choi, Woon Yong;Kang, Do-Hyung;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.305-309
    • /
    • 2014
  • We investigated a novel process for production of ethanol from glycerol using the yeast Pachysolen tannophilus. After optimization of the fermentation medium, repeated-batch flask culture was performed over a period of 378 hr using yeast cells immobilized on Celite. Our results indicated that the use of Celite for immobilization of P. tannophilus was a practical approach for ethanol production from glycerol, and should be suitable for industrial ethanol production.

Immobilization of Leuconostoc oenos Cells for Wine Deacidification (포도주의 신맛 조절을 위한 Leuconostoc oenos 세포의 고정화)

  • Lee, S.O.;Park, M.Y.
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.299-304
    • /
    • 1980
  • By using whole cells of Leuconostoc oenos ML-34 immobilized in polyacrylamide gel, deacidification of grape juice and wine was attempted. The immobilization did not destroy the original malo-lactic fermentation ability of the cells. However, the speed of malic acid decomposition by the immobilized cells was slow due to the slow transportation of the substrate through the gel layer. By reducing malic acid content in grape juice to a desired degree one may control the level of acid taste in wine fermented with the treated grape juice.

  • PDF

Comparative Bioreactor Studies in Terms of Oxygen Transfer between Suspended and Immobilized Fungal Systems for Cyclosporin A Fermentation (Cyclosporin A 생산을 위한 액체배양과 고정화배양의 생물반응기에서의 산소전달 비교 연구)

  • 전계택
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.211-223
    • /
    • 1994
  • In fermentations with a 4-liter stirred tank bioreactor, a better than two-fold enhancement of the gas-liquid mass transfer coefficient$(k_La)$ in the celite-immobilized fungal cultures of Tolypocladium in flatum over the parallel conventional free-cell was observed at identical biomass concentrations, despite the higher specific oxygen uptake rate of the immobilized fungi during exponential growth. As a result oxygen sufficient conditions, i. e., dissolve oxygen(D.O.) concentrations exceeding 75% air saturation, could be maintained throughout exponential growth period of the immobilized culture, in contrast to the suspended fungal culture, whose D.O. levels fell below 50% air saturation. A linear monotonic dependence of $k_La$ upon impeller agitaion rate was found for both immobilized and conventional cultivation modes over a range of 250 to 550rpm, the slope being a function of biomass concentration for the free but not for the immobilized cell system In contrasts oxygen transfer rate was a much weaker function of aeration rate up to about 2.5 vvm for both culture configurations. Above this level, aeration rate had no further effect on the mass transfer. In addition, the immobilized cultures sustained good morphological and physiological states, leading to almost two times higher cyclosporln A (CyA) productivity overt the parallel free cell system. These experiments suggest that the celite-immobilized fungal system in a stirred tank reactor has considerable promise for scaling up cyclosporin A production in terms of high-density cultivation.

  • PDF

Performance Comparison of Continuous Reactors for Bioethanol Production Based on Glycerol (글리세롤 기반의 바이오에탄올 생산을 위한 연속생산반응기의 성능 비교)

  • Lee, Sang-Jun;Song, Yoon-Seok;Kim, Sung-Bong;Kang, Sung-Woo;Han, Sung-Ok;Park, Chul-Hwan;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • Ethanol production using glycerol as a carbon source was performed by Enterobacter aerogenes immobilized on calcium alginate beads. To improve the ethanol production, the optimal conditions such as loading amount of immobilized cells and glycerol concentration were investigated. The optimal loading amount of immobilized cells and glycerol concentration were 10 mL of calcium alginate bead and 10 g/L, respectively. Consequently, glycerol consumption rate, ethanol concentration and yield were 0.32 g/$L{\cdot}h$, 3.38 g/L and 0.43 g/g on the batch production, respectively. Continuous production of ethanol was successfully achieved using two types of immobilized cell reactors (continuous stirred tank reactor and packed bed reactor) from 10 g/L of glycerol. In the continuous stirred tank reactor, glycerol consumption, ethanol concentration, specific productivity and yield were 9.8 g, 4.67 g/L, 1.17 g/$L{\cdot}h$, 0.48 g/g, respectively. The concentration of produced ethanol was 38-44% higher comparison to batch fermentation, and continuous stirred tank reactor showed better performance than packed bed reactor.

Enhancement of Ethanol Productivity by Air Supplement in Immobilized Cell Reactor System (균체고정화 생물반응기에서 산소공급에 의한 에탄올 생산성 향상)

  • 조의철;김정회;김영준
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.165-169
    • /
    • 1989
  • To achieve higher ethanol productivity in the fermentation system, a continuous ethanol production has been investigated with the air-supplement in a packed-bed immobilized cell reactor system. Yeast cells were immobilized using sodium alginate gel. The results showed that, when the feed medium was saturated with oxygen through aeration into the medium reservoir, the maximum ethanol productivity of the reactor was enhanced from 35 g/$\ell$-gel-hr to 55 g/$\ell$-gel-hr at the residence time of 10-20 min. and the residence time for the 90% conversion of substrate to ethanol was reduced from 40 min. to 25 min. In case of 18% glucose medium, the maximum productivity was increased from 35 g/$\ell$-gel-hr to 45 g/$\ell$-gel-hr and time required for 90% conversion was from 90 min to 70 min. This behavior of air-supplemented reactor system might be due to the fact that both growth and viable fraction of yeast within the Eel were increased during reactor operation.

  • PDF