• Title/Summary/Keyword: immobilized cell reactor

Search Result 60, Processing Time 0.03 seconds

Immobilization and Characterization of Rifamycin B Oxidase in Cellulose Acetate Beads (셀룰로오스 아세테이트에 고정화된 리파마이신 B 산화효소의 특성)

  • Chung, Bong-Hyun;Chang, Ho-Nam;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.2
    • /
    • pp.115-118
    • /
    • 1985
  • Rifamycin B oxidase converts rifamycin B to rifamycin S using oxygen as cosubstrate. Humnicola spp. (ATCC 20620) was treated with acetone and the cell powder was immobilized with cellulose acetate. The properties of the immobilized enzyme was examined. The optimum pHs of the immobilized and the free enzymes were 7.2. The optimum temperature of the immobilized enzyme was at 50-55$^{\circ}C$, which was 5$^{\circ}C$ higher than that of the free enzyme. The activities of the immobilized enzyme appeared less sensistive with respect to the changes of temperature and pH as compared to those of the free enzyme. Twenty percent of the enzyme activity was recovered when the enzyme was immobilized in 3mm beads. The storage stability was good below 4$0^{\circ}C$, but the activity decreased very rapidly above 5$0^{\circ}C$. The physical strength of the beads was good and was suitable as packing material in a three-phase enzyme reactor.

  • PDF

Production of Shikonin by A Hairy Root Culture of Lithospermum erythrorhizon

  • Seo, Weon-Taek;Park, Young-Hoon;Choe, Tae-Boo
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.41-45
    • /
    • 1992
  • Shikonin production was examined in a bubble column bioreactor system with the hairy roots of Lithosphermum erythrorhizon. The volumetric productivity was higher than those obtained from other reactor configurations with free or immobilized cells of the same cell line. The productivities of the bubble column reactor, with and without a product absorption trap, were 7.4 and 4.5 mg of shikonin/l/d, respectively. This indicated the importance of the product removal in the design and operation of the shikonin production system with hairy root culture.

  • PDF

Biosorption Characteristics of Pb and Cu by Ca-alginate Immobilized Algae Spirulina platensis (Ca-alginate에 고정한 Spirulina platensis의 납과 구리 흡착 특성)

  • Shin, Taek-Soo;Woo, Byoung-Sung;Lim, Byung-Seo;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.446-452
    • /
    • 2008
  • This study was conducted to research the biosorption characteristics using algae, Spirulina platensis, for the removal of Pb and Cu ions in wastewater. Both of free algal cell and immobilized algae by Ca-alginate were used as bioadsorbent, and experiment was proceed in batch reactor for Pb and Cu ions removal, respectively. In the biosorption of Pb and Cu ions by free Spirulina platensis cell, the adsorption equilibrium reached within 20 minute. The higher adsorbed amount of Pb and Cu was shown as increasing of initial concentration of Pb and Cu, and pH of solution, respectively, and the optimum pH was 4.5$\sim$5.0. Under the conditions of initial concentration of Pb or Cu are 200 mg/L, the maximum amounts of Pb and Cu adsorbed to the unit weight of Spirulina platensis were 86.43 and 57.02 mg/g, respectively, and these values were 1.94 and 1.48 times higher than those of activated carbon under same conditions, respectively. The biosorption kinetics of Pb and Cu ions by free Spirulina platensis cell fitted very well to the Freundlich and Langmuir isotherm. The maximum amount of Pb or Cu adsorbed to the unit mass of adsorbent by the Langmuir isotherm($q_{max}$) represented as 95.24 and 62.50 mg/g, respectively. The FT-IR results of free Spirulina platensis biomass showed that biomass has different functional groups and these functional groups are able to react with metal ions in aqueous solution. In the biosorption of Pb and Cu ions by Ca-alginate immobilized algae Spirulina platensis, the adsorption equilibrium reached within 40 min. and observed a little diffusion limitation differed from the free algal cell adsorption.

Production of Oligosaccharides from Sucrose for Animal Industry

  • Lee, Jae-Heung;Shin, Hyung-Tai;Lee, Soo-Won
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.384-387
    • /
    • 2004
  • The purpose of the present investigation was to develop a novel method for cell immobilization. Aureobasidium pullulans cells were mixed with an alginate solution, and the mixture was extruded to form small gel beads as hydrated- immobilized cells. The beads were then placed at $-15^{\circ}C$ for 6-24 h to induce freeze-dehydration. The freeze-dehydration resulted in shrinkage of beads due to water removal reducing bead volume by 82% and bead weight by 85%. The dehydrated beads were successfully used for the production of fructo-oligosaccharides in a model reactor system. This study showed that bioreactor performance can be improved up to 2 times by the use of the dehydrated beads.

  • PDF

Refractory Textile Wastewater Treatment Using Cell-Immobilized Polyethylene glycol Media (PEG 포괄고정화담체를 이용한 난분해성 염색폐수 처리)

  • Han, Duk-Gyu;Cho, Young-Jin;Bae, Woo-Keun;Hwang, Byung-Ho;Lee, Yong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.345-350
    • /
    • 2006
  • This study investigated the removal of recalcitrant organics in dyeing wastewater using a fluidized bed reactor(FBR) that contained cell-immobilized pellets. The pellets were manufactured and condensing the gel phase by mixing PEG-polymer and cells to form micro-porous PEG-polymer pellets whose size were ${\Phi}\;4mm{\times}H\;4mm$ on average. An industrial activated sludge without any pre-adaptation was used for the cell immobilization because it gave an equivalent removal efficiency to a pre-adapted sludges. The feed was obtained from an effluent of a biological treatment plant, which contained $SCOD_{Cr}$ of 330 mg/L and $SBOD_5$ of 20 mg/L. The $SCOD_{Cr}$ removal efficiency was over 45% and the effluent $COD_{Mn}$ concentration was less than 100 mg/L at HRTs from 6 to 24 hrs. The optimum HRT in the FBR was determined as 12 hrs considering the removal efficiency and cost. When a raw wastewater containing 768 mg/L of $COD_{Cr}$ was fed to the FBR, the effluent $COD_{Cr}$ concentration increased only slightly, giving a 70% of $COD_{Cr}$ removal or a 97% of $BCOD_5$ removal. This indicated that the FBR had an excellent capability of biodegradable organics removal also. In conclusion, the FBR could be applied to textile wastewater treatment in place of an activated sludge process.

Citric Acid Production and Scale-up in Dual Hollow Fiber Bioreactor (이중실관 생물 반응기에서의 구연산 생산과 Scale-up)

  • 장호남;지동진;심상준
    • Membrane Journal
    • /
    • v.2 no.2
    • /
    • pp.122-128
    • /
    • 1992
  • A study on the citric acid production was performed in various size dual hollow fiber bioreactors with immobilized Aspergillus niger (KCTC 1232). The final dry cell mass density reached 300g/l based on the space volume available for cell growth. Under air and oxygen aeration the volumethe productivity reached 0.63 and 1.02g/l.h, which cormsponded to 10 and 16 fold over those of batch fermentation, respectively. The initial pH of the medium was a critical factor and the lower value resulted in higher citric acid yield. The increase in the feeding rate of medium or the number of reactor unit resulted in the improvement of the productivity due to higher consumption rate of substrate.

  • PDF

Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor

  • Cha, Hye-Geun;Kim, Yi-Ok;Choi, Woon Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl) resulted in > 95% adsorption of the initial yeast cells at 2 hr for DEAE-rice hull and DEAE-sawdust and in only approximately 80% adsorption for DEAE-rice straw. In addition, DEAE-sawdust was found to be a more practical carrier for immobilizing yeast cells in terms of operational durability in shaking flask cultures with two different speeds of 60 and 150 rpm. Furthermore, the biosorption isotherms of DEAE-rice hull, -rice straw, and -sawdust for yeast cells revealed that the $Q_{max}$ of DEAE-sawdust (82.6 mg/g) was greater than that of DEAE-rice hull and DEAE-rice straw. During the 404-hr of continuous column reactor operation using yeast cells immobilized on DEAE-sawdust, no serious detachment of the yeast cells from the DEAE-sawdust was recorded. Ethanol yield of approximately 3.04 g/L was produced steadily, and glucose was completely converted to ethanol at a yield of 0.375 g-ethanol/g-glucose (73.4% of the theoretical value). Thus, sawdust is a promising practical immobilization carrier for ethanol production, with significance in the production of bioethanol as a biofuel.

The Roles of Lipid Supplements in Ethanol Production Using a Continuous Immobilized and Suspended Cell Bioreactor (연속식 고정화 및 현탁 세포 생물 반응기에 의한 에탄을 생성중 지질 첨가 영향)

  • Gil, Gwang-Hoon
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A one-stage, continuous-flow bioreactor with both immobilized and suspended cells was used to investigate the roles of lipid supplements in ethanol production by Saccharomyces cerevisiae. The reactor performance and the level of alcohol dehydrogenase(ADH) activities of the suspended cells, grown under various conditions, were measured. When ergosterol and/or oleic acid were added with surfactants to the yeast culture grown under non-aerated conditions, remarkable increases in ethanol production and cell growth was achieved, but specific ADH activities were not affected. Especially, no difference of specific ADH activities of the suspended cells grown under aerated and non-aerated condition was observed. The addition of the surfactant as a supplement also resulted in significant increases in ethanol production, cell growth, and specific ADH activity. When ergosterol and oleic acid were added to the yeast culture exposed to higher ethanol concentration($>40\;g/{\ell}$) level, ethanol production, cell growth, and specific ADH activity were increased, but the addition of surfactant was as effective as at lower ethanol concentration level. The results indicated that lipid supplements were more effective at higher ethanol concentration level than at lower ethanol concentration level during ethanol production. ADH isozyme patterns of the yeast cultures grown under various conditions on starch gel electrophoresis showed only one major band, probably ADH I. The migrating distance of the major isozyme, however, varied slightly according to the culture conditions of the cells. No apparent correlation was found between specific ADH activity and amount of ethanol produced. Cell mass was more important factor for ethanol production than specific ADH activity of the cells.

  • PDF

The Effect of Oxygen Supply on the Production of Citric Acid from Encapsulated Aspergillus niger (산소공급이 캡슐고정화 Aspergillus niger의 구연산 생산에 미치는 영향)

  • Park, Joong-Kon;Jeong, Geung-Sik
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.672-676
    • /
    • 1999
  • Encapsulated Aspergillus niger was prepared in order to inspect the effect of oxygen supply on the production of citric acid. A. niger cells which had been immobilized in the calcium alginate capsule grew and mycellia penetrated through the capsule membrane after two days of cultivation and covered over all of the capsule after eight days. The mycellia became loose when the nitrogen source was sufficient of oxygen was deficient. The larger amount of encapsulated cells were put into a given growth medium, the smaller quantity of citric acid was produced. The increase of volumetric oxygen transfer coefficient from 1.8 $hr^-$ to 2.55 $hr^-$ in the flask culture accelerated cell growth rate but did not influence the production of citric acid. The high oxygen supply rate($k_La:\;150\;hr^-$) in the concentric air lift reactor hastened the growth of cells and hindered the production of the citric acid. The reduction of nitrogen source level in the growth medium in the concentric air lift reactor increased citric acid production by 40 percent of that of flask cultivation and the culture period was shortened by 3 days. The variation of the geometry of the concentric air lift reactor did not influence the growth rate of encapsulated cells and production rate of citric acid.

  • PDF

Sorbitol production from Jerusalem artichoke by inulinase and permeabilized Zymomonas mobilis (Inulinase와 투과성이 향상된 Zymomonas mobilis를 이용한 Jerusalem artichoke로 부터의 sorbitol생산)

  • 김인철;전억한
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 1992
  • The use of Jerusalem artichoke containing $\beta$-1, 2-fructose oligomer in the production of sorbitol that is used as food additives and precursor for the L-sorbose has been studied. Coimmobilization of both inulinase and oxidoreductase was considered for the simultaneous reaction for hydrolysis of inulin and conversion of glucose and fructose liberated from inulin to sorbitol. Both inulinase and oxidoreductase were immobilized in chitin(5%, w/v) and K-carrageenan(4%, w/v), The activity of oxidoreductase was specified by permeabilization of Zymomonas mobilis cell with 0.2% CTAB(Cetyltrimethylammonlumbromide). The use of inulinase for hydrolysis of inulin resulted in 36.65g/l of glucose and 85.32g/1 of fructose respectively. These are valuable substrates for sorbitol production. Using these hydrolyzates, accumulation of 35.64g/l for sorbitol occurred at $38^{\circ}C$ and pH6.2. When permeabilized cells and inulinase were coimmobilized, sorbitol produced at 30.15g/l although it is low compared with 35.64g/l in separated reactor system.

  • PDF