• Title/Summary/Keyword: immobilized carrier

Search Result 75, Processing Time 0.022 seconds

Immobilization of Fructosyltransferase to a Porous Carrier Bearing Quaternary Alkyl Alkanolammonium Groups (Quaternary Alkyl Alkanolammonium기를 가지는 다공성 지지체에 Fructosyltransferase의 고정화)

  • 정미선;이선희;전덕영;황금택;엄태붕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.534-539
    • /
    • 1997
  • In order to reuse enzyme efficiently, a mthod for ionic binding of fructosyltransferase to a porous carrier bearing quaternary alkyl alkanolammonium groups was investigated. The fructosyltransferase activity of the immobilized enzyme increased with increasing amount of loaded enzyme, and maximally reached 770U/g of the carrier when loaded amount of the enzyme was 18.2 mg/g carrier. The immobilized fructosyltransferase had optimum pH and temperature of 7.5 and 45$^{\circ}C$, respectively, whereas soluble enzyme had 6.5 and 55$^{\circ}C$: the Km value for the immobilized enzyme was 27.8 mM for sucrose, which was the same as that of soluble enzyme. In a batch reactor, the enzyme produced a mixture of fructooligosaccharides, mainly F$_2$G, from sucrose with the slight loss of enzyme activity during continuous operation of 12 days at 42$^{\circ}C$.

  • PDF

푸마르산의 온라인 모니터링을 위한 흐름주입분석 기술 개발

  • Son, Ok-Jae;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.136-138
    • /
    • 2002
  • In this work we describe the on-line monitoring technique for the analysis of fumaric acid in biotechnological processes. Fumarase and malate dehydrogenase(MDH) were immobilized on epoxy carrier and integrated into a FIA system. The effects of carrier buffer flow rate, pH, reaction temperature on the immobilized fumarase/MDH were investigated for the development of a fumarate-FIA system. Furthermore the effects of substrates, salts and metabolites dissolved in the sample on the activity of the immobilized enzyme were investigated.

  • PDF

Removal of Benzene in Solution by using the Bio-carrier with Dead Bacillus drentensis sp. and Polysulfone (Bacillus drentensis sp. 사균과 polysulfone으로 이루어진 미생물담체를 이용한 수용액 내 벤젠 제거)

  • Park, Sanghee;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.46-56
    • /
    • 2013
  • Laboratory scale experiments to remove benzene in solution by using the bio-carrier composed of dead biomass have been performed. The immobilized bio-carrier with dead Bacillus drentensis sp. and polysulfone was manufactured as the biosorbent. Batch sorption experiments were performed with bio-carriers having various quantities of biomass and then, their removal efficiencies and uptake capacities were calculated. From results of batch experiments, 98.0% of the initial benzene (1 mg/L) in 1 liter of solution was removed by using 40 g of immobilized bio-carrier containing 5% biomass within 1 hour and the biosorption reaction reached in equilibrium within 2 hours. Benzene removal efficiency slightly increased (99.0 to $99.4%{\pm}0.05$) as the temperature increased from 15 to $35^{\circ}C$, suggesting that the temperature rarely affects on the removal efficiency of the bio-carrier. The removal efficiency changed under the different initial benzene concentration in solution and benzene removal efficiency of the bio-carrier increased with the increase of the initial benzene concentration (0.001 to 10 mg/L). More than 99.0% of benzene was removed from solution when the initial benzene concentration ranged from 1 to 10 mg/L. From results of fitting process for batch experimental data to Langmuir and Freundlich isotherms, the removal isotherms of benzene were more well fitted to Freundlich model ($r^2$=0.9242) rather than Langmuir model ($r^2$=0.7453). From the column experiment, the benzene removal efficiency maintained over 99.0% until 420 pore volumes of benzene solution (initial benzene concentration: 1 mg/L) were injected in the column packed with bio-carriers, investigating that the immobilized carrier containing Bacillus drentensis sp. and polysulfone is the outstanding biosorbent to remove benzene in solution.

Continuous Production of Cyclodextrin in Two-Stage Immobilized Enzyme Reactor Coupled with Ultrafiltration Recycle System (2단계 고정화 효소반응기를 활용한 Cyclodextrin의 연속생산)

  • Lee, Yong-Hyun;Lee, Sang-Ho;Han, Il-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 1991
  • The two-stage enzyme reactor, packed with cyclodextrin glucanotransferase (CGTase) immobilized on Amberite IRA 900, coupled with ultrafiltration membrane was investigated for continuous production of cyclodextrin (CD). 5% (w/v) of soluble starch was partially cyclized, in the 0.1 l first-stage immobilized enzyme reactor, up to CD conversion yield of 10% (w/w) at retention time of 0.56hr and 1.5 units of immobilized CGTase/1g of carrier. In the second stage main immobilized enzyme reactor capacity of 1.5 l, the maximum CD conversion yield of 39% (w/v) was achieved at retention time of 2.8hr and 0.47 unit of CGTase/1 g of carrier. Unreacted residual dextrin was fractionated with ultrafiltration membrane, and then, recycled into the second-stage main bioreactor to increase the CD conversion yield. The most suitable membrane size and the volume concentration ratio (concentrate: filterate) for recycling of unreacted residual dextrin were found to be 5K dalton and 4:6, respectively. CD conversion yield was increased about 3~4% upon co-immobilization of pulluanase along with CGTase. Spent Amberite IRA 900 can be reutilized consecutively more than 3 times for immobilization of CGTase after regeneration.

  • PDF

Algicidal Effect of Immobilized Bacteria against S. hantzschii in Microcosm (살조세균 Pseudomonas fluorescens HYK0210-SK09의 두 가지 담체 포집능과 이를 이용한 microcosm에서 Stephanodiscus hantzschii (Bacillariophyceae)의 살조능 연구)

  • Jung, Seung-Won;Kim, Young-Ok;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • To assess the algicidal effect of a bacterium, Pseudomonas fluorescens HYK0210-SK09 (SK09), attached to activated carbon polyvinyl alcohol (ACPA) and cellulose sponge (CS) carriers against Stephanodiscus hantzschii, the present study was carried out in an indoor-microcosm. As comparing immobilization effects of two carriers, the ACPA carrier allowed for higher packing cell density of SK09 compared to the CS carrier. In the microcosm, immobilized SK09 cells were applied to control S. hantzschii blooms. Immobilized SK09 cells exhibited a species-specific activity towards the diatom, showing an algicidal effect up to 72% attached by ACPA carriers and to 51% attached by CS carriers. In particular, a level of conductivity treated with ACPA carriers was decreased than that of CS carriers. The present study clearly demonstrates that ACPA-immobilized SK09 cells could effectively control S. hantzschii blooms and improve water quality in the microcosm ecosystem.

Shear Effects on Production of Lignin Peroxidase by Phanerochaete chrysosporium

  • Sang, Byeong-In;Kim, Yong-Hwan;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 1996
  • Since biosynthesis of lignin peroxidase from Phanerochaete chrysosporium was known to be sensitive to shear, it is interesting to understand the effects of the shear sensitivity for the overproduction of lignin peroxidase. In stirred-tank fermentor, the shear-sensitivity in lignin peroxidase biosynthesis was quantified by using Kolmogorov length scale. It was found that agitation at 80$\mu$m Kolmogorov length scale is advantageous for the production of lignin peroxidase from P. chrysosporium. To overcome the shear sensitivity in lignin peroxidase biosynthesis caused by the agitation,P. chrysosporium was immobilized on various solid carriers. The nylon-immobilized P. chrysosporium was chosen in the present study as a way to overcome the shear sensitivity at the ranges of above 50$\mu$m Kolmogorov length scale. The adhesion force between immobilized cell and carrier can be predicted by thermodynamic approach and used as a criteria to select an adequate carrier materials for immobilization.

  • PDF

Pseudomonas aeruginosa BYK-2의 균체고정화법을 이용한 생물유화제의 생산

  • Jeong, Hye-Seong;Kim, Hak-Ju;Ha, Sun-Deuk;Hwang, Seon-Hui;Gu, Heon-Seo;Gong, Jae-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.378-381
    • /
    • 2000
  • The optimal conditions and properties for the immobilization of marine bacterium Pseudomonas aeruginosa BYK-2 have been determined. For the high productioon of biosurfactant, Na-alginate, PVA, modified PVA were used as a carrier. The optimal emulsifying activity on immobilized Pseudomonas aeruginosa BYK-2 showed 1036Unit (about 2.2g/L biosurfactant) in Basal salt medium(B.S.M.) at $25^{\circ}C$, 100rpm. Ca-alginate was selected the optimal bead among PVA, modified PVA and Ca-alginate. The optimal cell load in alginate bead was 10 gCWW/100g carrier. As the results of incubation of immobilized 5g Ca-alginate bead (conditions; 3% alginate, bead diameter: 2.3mm, 10% cell load) in 50m1 production medium, The emulsifying activity of 1407Unit, about 3.0g/L biosurfactant was obtained from immobilized cell after cultivation of 92hr at $25^{\circ}C$, 100rpm.

  • PDF

Simultaneous and Sequential Co-Immobilization of Glucose Oxidase and Catalase onto Florisil

  • Gul, Ozyilmaz;Tukel, S. Seyhan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.960-967
    • /
    • 2007
  • The co-immobilization of Aspergillus niger glucose oxidase (GOD) with bovine liver catalase (CAT) onto florisil (magnesium silicate-based porous carrier) was investigated to improve the catalytic efficiency of GOD against $H_2O2$ inactivation. The effect of the amount of bound CAT on the GOD activity was also studied for 12 different initial combinations of GOD and CAT, using simultaneous and sequential coupling. The sequentially co-immobilized GOD-CAT showed a higher efficiency than the simultaneously co-immobilized GOD-CAT in terms of the GOD activity and economic costs. The highest activity was shown by the sequentially co-immobilized GOD-CAT when the initial amounts of GOD and CAT were 10 mg and 5 mg per gram of carrier. The optimum pH, buffer concentration, and temperature for GOD activity for the same co-immobilized GOD-CAT sample were then determined as pH 6.5, 50 mM, and $30^{\circ}C$, respectively. When compared with the individually immobilized GOD, the catalytic activity of the co-immobilized GOD-CAT was 70% higher, plus the reusability was more than two-fold. The storage stability of the co-immobilized GOD-CAT was also found to be higher than that of the free form at both $5^{\circ}C\;and\;25^{\circ}C$. The increased GOD activity and reusability resulting from the co-immobilization process may have been due to CAT protecting GOD from inactivation by $H_2O2$ and supplying additional $O_2$ to the reaction system.

Study of Continuous Production of Alcohol using Biologically Sandwich-styled Immobilization Carrier (샌드위치식 고분자담체를 이용한 알코올 연속생산연구)

  • Park, Young-G.;Kim, Hee-Jung
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.213-218
    • /
    • 2008
  • The present study was to investigate the continuous production of alcohol using immobilized carrier manufactured by polymeric materials. Fermentation runs with a crushed rice, with constituents recovered from batch culture and with ones from continuous culture were thus compared. The performances of immobilized carrier were governed by sandwitched synthetic polymers, the evolution of the continuous culture was steadily governed by the production of alcohol in the lag time of batch culture. The main focus was set on the enhancement of the alcohol production by an newly-developed polymeric forms. This polymeric form led to a drastic increase of the microorganism and the production cost in the continuous reactor was thereby reduced. The sandwitched polymeric-formed carrier, which was resistant to external environments, serves as an interesting alternative to maintain the stability of biological process. These whole results were discussed with the aim to better understand the continuous process implied in the microorganism's build-up during cultivation of fermentation broth.

2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles

  • Dahili, Laura Amina;Nagy, Endre;Feczko, Tivadar
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.768-774
    • /
    • 2017
  • Horseradish peroxidase (HRP) catalyzes the oxidation of aromatic compounds by hydrogen peroxide via insoluble polymer formation, which can be precipitated from the wastewater. For HRP immobilization, poly(lactic-co-glycolic acid) (PLGA) fine carrier supports were produced by using the Nano Spray Dryer B-90. Immobilized HRP was used to remove the persistent 2,4-dichlorophenol from model wastewater. Both extracted (9-16 U/g) and purified HRP (11-25 U/g) retained their activity to a high extent after crosslinking to the PLGA particles. The immobilized enzyme activity was substantially higher in both the acidic and the alkaline pH regions compared with the free enzyme. Optimally, 98% of the 2,4-dichlorophenol could be eliminated using immobilized HRP due to catalytic removal and partly to adsorption on the carrier supports. Immobilized enzyme kinetics for 2,4-dichlorophenol elimination was studied for the first time, and it could be concluded that competitive product inhibition took place.