• Title/Summary/Keyword: immobilized

Search Result 1,595, Processing Time 0.022 seconds

Biosorption of Heavy Metal Sons by Biomass of Marine Brown Algae in Cheju using Their immobilization Techniques: Biosorption of Copper by Undaria pinnatifida

  • Sang-Kyu Kam;Min-Gyu Lee
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.157-166
    • /
    • 1992
  • The biosorptlon perFormances of copper were Investigated by the immobilized biomass of nonliving marine brown algae Undaria pinnatifida by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. Among the immobilization methods, the copper uptake decreased in the following sequence: Ca-ALG > Ba-ALG > PEG > CARR. The pattern of copper uptake by the immobilized biomass fitted the Langmuir isotherm better than the Freundlich isotherm. Desorption of deposited copper with 0.05 ~0.5M HCI, resulted in no changes of the copper uptake capacity of the immobilized biomass by the immobilization methods except for PEG, through five subsequent biosorptioydesorption cycles. There was no damage to the immobilized biomass which retained its macroscopic appearance in repeated copper uptake/elution cycles.

  • PDF

Production of (R)-Ethyl-4-Chloro-3-Hydroxybutanoate Using Saccharomyces cerevisiae YOL151W Reductase Immobilized onto Magnetic Microparticles

  • Choo, Jin Woo;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1810-1818
    • /
    • 2015
  • For the synthesis of various pharmaceuticals, chiral alcohols are useful intermediates. Among them, (R)-ethyl-4-chloro-3-hydroxybutanoate ((R)-ECHB) is an important building block for the synthesis of L-carnitine. (R)-ECHB is produced from ethyl-4-chloro-3-oxobutanoate (ECOB) by a reductase-mediated, enantioselective reduction reaction. The Saccharomyces cerevisiae YOL151W reductase that is expressed in Escherichia coli cells exhibited an enantioselective reduction reaction toward ECOB. By virtue of the C-terminal His-tag, the YOL151W reductase was purified from the cell-free extract using Ni2+-NTA column chromatography and immobilized onto Ni2+-magnetic microparticles. The physical properties of the immobilized reductase (Imm-Red) were measured using electron microscopy, a magnetic property measurement system, and a zeta potential system; the average size of the particles was approximately 1 μm and the saturated magnetic value was 31.76 emu/g. A neodymium magnet was used to recover the immobilized enzyme within 2 min. The Imm-Red showed an optimum temperature at 45℃ and an optimum pH at 6.0. In addition, Bacillus megaterium glucose dehydrogenase (GDH) was produced in the E. coli cells and was used in the coupling reaction to regenerate the NADPH cofactor. The reduction/oxidation coupling reaction composed of the Imm-Red and GDH converted 20 mM ECOB exclusively into (R)-ECHB with an e.e.p value of 98%.

Chemically Modified Sepharose as Support for the Immobilization of Cholesterol Oxidase

  • Yang, Hailin;Chen, Yi;Xin, Yu;Zhang, Ling;Zhang, Yuran;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1212-1220
    • /
    • 2013
  • Because the cholesterol oxidase from Brevibacterium sp. M201008 was not as stable as the free enzyme form, it had been covalently immobilized onto chemically modified Sepharose particles via N-ethyl-N'-3-dimethylaminopropyl carbodiimide. The optimum immobilization conditions were determined, and the immobilized enzyme activity obtained was 12.01 U/g Sepharose-ethylenediamine. The immobilization of the enzyme was characterized by Fourier transform infrared spectroscopy. The immobilized enzyme exhibited the maximal activity at $35^{\circ}C$ and pH 7.5, which was unchanged compared with the free form. After being repeatedly used 20 times, the immobilized enzyme retained more than 40.43% of its original activity. The immobilized enzyme showed better operational stability, including wider thermal and pH ranges, and retained 62.87% activity after 20 days of storage at $4^{\circ}C$, which was longer than the free enzyme.

Immobilized ${\beta}-Cyclodextrin$ as a Simple and Recyclable Method for Cholesterol Removal in Milk

  • Kwak, H.-S.;Kim, S.-H.;Kim, J.-H.;Choi, H.-J.;Kang, J.
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.873-877
    • /
    • 2004
  • This study was designed to determine the optimum conditions of three different factors (mixing time, mixing temperature, and tube size) in reduction of cholesterol in milk using immobilized $\beta$-CD beads. Immobilized $\beta$-CD glass beads were prepared at different conditions of silaniza-tion and $\beta$-CD immobilization reactions. In result, the glass beads (diameter 1 mm) at 20 mM 3-isocyanatopropyltriethoxysilane and 30 mM $\beta$-CD without base showed the highest choles-terol removal rate as 41%. Using above immobilized $\beta$-CD glass beads, the cholesterol removal rate was 40.2% with 6 h of mixing time in 7 mm diameter tube at $10^{\circ}C$. After choles-terol removal from milk, the glass beads were washed for cholesterol dissociation and reused. In recycling study, the cholesterol removal rate was 41%, which was mostly same as that using new glass beads. These results indicated that cholesterol removal rate was about 40% with $\beta$-CD immobilized glass beads, however, the recycling efficiency was almost 100%.

DFA IV를 생산하는 levan fructotransferase의 포괄고정화

  • Im, Seung;Lee, Gi-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.567-570
    • /
    • 2000
  • The condition of immobilization of the partially purified levan fructotransferase and the properties of the immobilized enzyme was investigated. Levan fructotransferase was immobilized on ${\kappa}\;-carrageenan$ beads by entrapment method. The optimal ${\kappa}\;-carrageenan$ concentration was obtained 2%(w/v) (or the matrix. At that time, immobilized enzymes(0.81 units) have relative low activity compare with soluble enzyme(7.7 units). To immobilized and soluble enzyme, optimal activity temperature and pH were measured $55^{\circ}C$, 6.0 in sodium phosphate buffer 20mM solution. If crosslinking agent was added, proper concentration was 0.5%(v/v). At $37^{\circ}C$, immobilized and soluble enzyme converted levan to oligofructose and DFA IV, and the conversion ratio was 32% and 61% at 60 hr.

  • PDF

Pigment Degradation by Lignin Peroxidase Covalently Immobilized on Magnetic Particles

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2017
  • Pigment red 53:1 is a dye used in various products as a component of the inks, suspected of being carcinogenic. Thus, the environmental and occupational issues related to it are important. The enzyme-based approach with reusability has advantages to consume less energy and generate less harsh side- products compared to the conventional strategies including separations, microbe, and electrochemical treatment. The degradation of Pigment red 53:1 by the lignin peroxidase immobilized on the surface of magnetic particles has been studied. The immobilization of the peroxidase was conducted on magnetic particle surface with the treatment of polyethyleneimine, glutaraldehyde, and the peroxidase, in sequence. The immobilization was confirmed using X-ray photon spectroscopy. The absorbance peak of the pigment was monitored at 495 nm of UV/Vis spectrum with respect to time to calculate the catalytic activities of the pigment for the immobilized lignin peroxidase. For the comparison, the absorbance of the lignin peroxidase free in solution was also monitored. The catalytic rate constant values for the free lignin peroxidases and the immobilized those were 0.51 and $0.34min^{-1}$, respectively. The reusable activity for the immobilized lignin peroxidase was kept to 92% after 10 cycles. The stabilities for heat and storage were also investigated for both cases.

Polyacrylamide Gel Immobilization of Porcine Liver Esterase for the Enantioselective Production of Levofloxacin

  • Lee, Sang-Yoon;Min, Byung-Hyuk;Song, Seong-Won;Oh, Sun-Young;Lim, Sang-Min;Kim, Sang-Lin;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.179-182
    • /
    • 2001
  • Porcine liver esterase was immobilized in polyacrylamide gel for the enantioselective production of levofloxacin from ofloxacin butyl ester. The initial activity of immobilized esterase was found to be significantly affected by the polyacrylamide gel composition. The optimum concentrations of monomer and crosslinker were determined to be 20% and 8.3%, respectively. The activity of immobilized esterase was 55.4% compared to a free enzyme. Enantiomeric excess was maintained at 60%, almost the same level as that of free enzyme. In addition, the immobilized esterase could be used repeatedly up to 10 times without experiencing any severe loss of activity and enantioselectivity.

  • PDF

Immobilization of the Antarctic Bacillus sp. LX-1 α-Galactosidase on Eudragit L-100 for the Production of a Functional Feed Additive

  • Lee, Jaekoo;Park, Inkyung;Cho, Jaiesoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.552-557
    • /
    • 2013
  • Partially purified ${\alpha}$-galactosidase from Bacillus sp. LX-1 was non-covalently immobilized on a reversibly soluble-insoluble polymer, Eudragit L-100, and an immobilization efficiency of 0.93 was obtained. The optimum pH of the free and immobilized enzyme was 6.5 to 7.0 and 7.0, respectively, while there was no change in optimum temperature between the free and immobilized ${\alpha}$-galactosidase. The immobilized ${\alpha}$-galactosidase was reutilized six times without significant loss in activity. The immobilized enzyme showed good storage stability at $37^{\circ}C$, retaining about 50% of its initial activity even after 18 d at this temperature, while the free enzyme was completely inactivated. The immobilization of ${\alpha}$-galactosidase from Bacillus sp. LX-1 on Eudragit L-100 may be a promising strategy for removal of ${\alpha}$-galacto-oligosaccharides such as raffinose and stachyose from soybean meal and other legume in feed industry.

Immobilization of Trigonopsis variabilis and Conversion of Cephalosporin C to 7$\beta$-(4-Caboxybutanamido)Cephalosporanic Acid (Trigonopsis variabilis의 고정화 및 Cephalosporin C로부터 7$\beta$-(4-Carbohybutanamido)Cephalosporanic Acid의 전환)

  • 김종균;임재윤
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • An immobilized Trigonopsis variabilis cells having an high activity of D-amino acid oxidase(DAO) was used to convert CPC into GL-7-ACA. The optimal pH of the reaction system was 8.0-8.5, and the optimal temperature was 40$\circ$C. When immobilized cell was used repeatedly in semi-batchwise reaction, the system retained 80% of the initial activity after used of 12 times for over 12 hours. The storage stability of the immobilized cell was maintained for 30 days at 4$\circ$C. The CPC concentration for the maximal reaction rate was about 30 mM and 40 mM for free and immobilized cells, respectively. Substrate inhibition of CPC concentration more than 50 mM was overcomed by 20~25% by immobilization. Pure oxygen supply into reaction system was most efficient in D-amino acid oxidase reaction. Continuous conversion to GL-7-ACA from CPC has been developed with an bioreactor system containing immobilized T variabilis cells. By opera- tion of the reactor for 5 hours, the average conversion yield of >80% and GL-7-ACA production of 40~45 mM per hour could be obtained.

  • PDF

Production of dTDP-4-keto-6-deoxy-D-glucose by Immobilization of dTDP-D-glucose 4,6-dehydratase

  • Kharel, Mandan-Kumar;Liou, Kwang-Kyoung;Sohng, Jae-Kyung;Lee, Hei-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.297-301
    • /
    • 2004
  • The dTDP-D-glucose 4,6-dehydratase from Salmonella enterica was immobilized using covalent binding to cyanogen bromide activated sepharose. The immobilized enzyme was used to produce dTDP-4-keto-6-deoxy-D-glucose, a key sugar intermediate that can be used economically to produce diverse classes of unusual sugars appended in various antibiotics. The enzyme was immobilized on the sepharose after activation with cyanogen bromide. The maximum immobilization (80.03%) was achieved after 14 h of coupling. The covalently immobilized enzyme was stable, and an average of 78.4 % conversion was achieved until 120 h of immobilization when it was repeatedly used. Similar conversion was noticed for the first batch using the enzyme entrapped-hydrogel but activity was gradually decreased in the following batches. The production of dTDP-4-keto-6-deoxy-D-glucose by using an immobilized enzyme has high potential for commercial application.