• Title/Summary/Keyword: immiscibility

Search Result 40, Processing Time 0.042 seconds

Influence of Minor Element on Microstructure and Mechanical Properties of TiFe Ultrafine Eutectic Alloys (TiFe 공정합금의 미소합금 첨가에 따른 미세구조 변화 및 기계적 물성)

  • Lee, Chan Ho;Jo, Jae Hyuk;Mun, Sang Chul;Kim, Jung Tae;Yeo, Eun Jin;Kim, Ki Buem
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.615-619
    • /
    • 2012
  • Recently, ultrafine grained (ufg, typically 100 > d > 500 nm) Ti-Fe eutectic materials have been highlighted due to their extraordinarily high strength and good abrasion resistance compared to conventional coarse grained (cg, d > $1{\mu}m$) materials. However, these materials exhibit limited plastic strain and toughness during room temperature deformation due to highly localized shear strain. Several approaches have been extensively studied to overcome such drawbacks, such as the addition of minor elements (Sn, Nb, Co, etc.). In this paper, we have investigated the influence of the addition of Gd and Y contents (0.3-1.0 at.%) into the binary Ti-Fe eutectic alloy. Gd and Y are chosen due to their immiscibility with Ti. Microstructural investigation reveals that the Gd phase forms in the eutectic matrix and the Gd phase size increases with increasing Gd content. The improvement of the mechanical properties is possibly correlated to the precipitation hardening. On the other hand, in the case of Ti-Fe-Y alloys, with increasing Y contents, primary phases form and lamellar spacing increases compared to the case of the eutectic alloy. Investigation of the mechanical properties reveals that the plasticity of the Ti-Fe-Y alloys is gradually improved, without a reduction of strength. These results suggest that the enhancement of the mechanical properties is closely related to the formation of the primary phase.

Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents (수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구)

  • KIM, JAE-KON;JEON, CHEOl-HWAN;MIN, KYONG-IL;KIM, SHIN;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.

Influence of the Ceramide(III) and Cholesterol on the Structure of a Non-hydrous Phospholipid-based Lamellar Liquid Crystal : Structural and Thermal Transition Behaviors

  • Jeong, Tae-Hwa;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1021-1030
    • /
    • 2007
  • The effects of the creamide III (CER3) and cholesterol (CHOL) on the structure of a non-hydrous distearoyl phosphatidylcholine (DSPC)-based lamellar liquid crystal (LC) hydrated by only propylene glycol (PG) without water were investigated by differential scanning calorimetry (DSC), X-ray diffractions (XRDs), and polarized microscope (PM). As soon as CER3 was incorporated into the lamellar phase, the characteristic LPP was appeared as well as the characteristic SPP, and the formation of separated CER3 crystalline phase was observed depending upon the increase of CER3 content by XRDs. Also, by DSC, it was shown that the increase of CER3 made the monotectic thermal transition be changed to the eutectic thermal transition which indicates the formation of separated CER3 crystalline phases and the main transition temperatures (Tc1) to be gradually decreased and the enthalpy change (ΔH) to be linearly increased. Incorporating CHOL, the formation of LPP and SPP showed almost similar behaviors to CER3, but incorporating small amounts of CHOL showed the characteristic peaks of CHOL which meant the existence of crystalline CHOL phase due to the immiscibility of CHOL with DSPC swollen by PG differently from CER3, and increasing CHOL made the intensity of the 1st order diffraction for LPP weakened as well as the intensities of the characteristic diffractions for DSPC. Also, in the results of DSC, it showed more complex thermal behaviors having several Tc than CER3 due to its bulky chemical structure. In the present study, the inducement of CER3 and CHOL as other lipids present in human stratum corneum (SC) into a non-hydrous lamellar phase is discussed in terms of the influence on their structural and thermal transition.

Fabrication of Porous Silk Fibroin Microparticles by Electrohydrodynamic Spraying (전기분사법에 의한 다공성 실크 피브로인 미세입자의 제조)

  • Kim, Moo Kon;Lee, Ki Hoon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.98-102
    • /
    • 2014
  • Nowadays, silk fibroin receives a lot of attention as novel natural biomaterials due to its excellent biocompatibility and biodegradability. Electrohydrodynamic spraying (EHDS) is one of the method for the preparation of micro or nanoparticles by applying high voltage to the polymer solution. In this research, we fabricated silk fibroin porous microparticles by electrohydrodynamic spraying. Poly(ethylene glycol) (PEG) was added to the fibroin solution to give pores to silk fibroin microparticles. By the addition of PEG, the microparticle size was decreased despite of the decrease in conductivity and the increase of viscosity of the spraying solution. It seems that the immiscibility of silk fibroin and PEG affected much more to the microparticle size than the conductivity and viscosity. Immersing the as-sprayed microparticles into the water removed the phase-separated PEG, and finally, porous silk fibroin microparticles were prepared. The porous silk fibroin microparticles are expected to be applied as drug carriers in drug delivery or cell carriers in tissue engineering.

Evolution of Hydrothermal Fluids at Daehwa Mo-W Deposit (대화 Mo-W 열수 맥상 광상의 유체 진화 특성)

  • Jo, Jin Hee;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • The Daehwa Mo-W deposit is located within the Gyeonggi massif. Quartz and calcite vein mineralization occurred in the Precambrian gneiss and Jurassic granites. Three main types (Type I: liquid-rich $H_2O$ type, Type II: vapor-rich $H_2O$ type, Type III: $CO_2-H_2O$ type) of fluid inclusions were observed and are classified herein based on their phase relations at room temperature. Within ore shoots, type III fluid inclusions have been classified into four subtypes (type IIIa, IIIb, IIIc and IIId) based on their volume percent of aqueous and carbonaceous ($CO_2$) phase at room temperatures combined with their total homogenization behavior and homogenization behavior of $CO_2$ phase. Homogenization temperatures of primary type I fluid inclusions in the quartz range from $374^{\circ}C$ to $161^{\circ}C$ with salinities between 13.6 and 0.5 equiv. wt.% NaCl. Homogenization temperatures of primary type III fluid inclusions in quartz of main generation, are in the range of $303^{\circ}C$ to $251^{\circ}C$. Clathrate melting temperatures of the type III fluid inclusions were 7.3 to $9.5^{\circ}C$, corresponding to salinities of 5.2 to 1.0 equiv. wt. % NaCl. Melting and homogenization temperatures of $CO_2$ phase of type III fluid inclusions were -57.4 to $-56.6^{\circ}C$ and 29.0 to $30.8^{\circ}C$, respectively. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. The Daehwa early hydrothermal system is characterized by $H_2O-CO_2$-NaCl fluid at about $400^{\circ}C$. The main mineralization occurred by $CO_2$ immiscibility at temperatures of about 300 to $250^{\circ}C$. At the late base-metal mineralization aqueous fluid formed by mixing with cooler and less saline meteoric groundwater.

Structural and Electrical Properties of Fluorine-doped Zinc Tin Oxide Thin Films Prepared by Radio-Frequency Magnetron Sputtering

  • Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.335-335
    • /
    • 2014
  • Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

  • PDF

Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolytes containing $TiO_2$ Filler ($TiO_2$ 필러를 포함하는 PEO/PMMA 고분자 복합체 전해질의 이온전도도 및 결정화도)

  • Lee, Lyun-Gyu;Park, Soo-Jin;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.758-763
    • /
    • 2011
  • In this work, polymer composite electrolytes were prepared by a blend of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) as a polymer matrix, propylene carbonate as a plasticizer, $LiClO_4$ as a salt, and by containing a different content of $TiO_2$, by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was evaluated using X-ray diffraction(XRD) and AC impedance method, respectively. The morphology of composite electrolyte film was analyzed by SEM method. From the experimental results, by increasing the $TiO_2$ content, crystallinity of PEO was reduced, and ionic conductivity was increased. In particular, the ionic conductivity was dependent on the content of $TiO_2$ and showed the highest value 15 wt%. However, when $TiO_2$ content exceeds 15 wt%, the ionic conductivity was decreased. According to the surface morphology, the ionic conductivity was decreased because the polymer composite electrolytes showed a heterogenous morphology of fillers due to immiscibility or aggregation of the filler within the polymer matrix.

Origin of limestone conglomerates in the Choson Supergroup(Cambro-Ordovician), mid-east Korea

  • Kwon Y.K.;Chough S.K.;Choi D.K.;Lee D.J.
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.63-65
    • /
    • 2001
  • The Chosen Supergroup (Cambro-Ordovician), mid-east Korea consists mainly of shallow marine carbonates and contains a variety of limestone conglomerates. These conglomerates largely comprise oligomictic, rounded lime-mudstone clasts of various size and shape (equant, oval, discoidal, tabular, and irregular) and dolomitic shale matrices. Most clasts are characterized by jigsaw-fit (mosaic), disorganized, or edgewise fabric and autoclastic lithology. Each conglomerate layer is commonly interbedded with limestone-dolomitic shale couplets and occasionally underlain by fractured limestone layer, capped by calcareous shale. According to composition, characteristic sedimentary structures, and fabric, limestone conglomerates in the Hwajol, Tumugol, Makkol, and Mungok formations of Chosen Supergroup can be classified into 4 types: (1) disorganized polymictic conglomerate (Cd), (2) horizontally stratified polymictic conglomerate (Cs), (3) mosaic conglomerate (Cm), and (4) disorganized/edgewise oligomictic conglomerate (Cd/e). These conglomerates are either depositional (Cd and Cs) or diagenetic (Cm and Cd/e) in origin. Depositional conglomerates are interpreted as storm deposits, tidal channel fills, or transgressive lag deposits. On the other hand, diagenetic conglomerates are not deposited by normal sedimentary processes, but formed by post-depositional diagenetic processes. Diagenetic conglomerates in the Chosen Supergroup are characterized by autoclastic and oligomictic lithology of lime-mudstone clasts, jigsaw-fit (mosaic) fabric, edgewise fabric, and a gradual transition from the underlying bed (Table 1). Autoclastic and oligomictic lithologies may be indicative of subsurface brecciation (fragmentation). Consolidation of lime-mudstone clasts pre-requisite for brecciation may result from dissolution and reprecipitation of CaCO3 by degradation of organic matter during burial. Jigsaw-fit fabric has been considered as evidence for in situ fragmentation. The edgewise fabric is most likely formed by expulsion of pore fluid during compaction. The lower boundary of intraformational conglomerates of depositional origin is commonly sharp and erosional. In contrast, diagenetic conglomerate layers mostly show a gradual transition from the underlying unit, which is indicative of progressive fragmentation upward (Fig. 1). The underlying fractured limestone layer also shows evidence for in situ fragmentation such as jigsaw-fit fabric and the same lithology as the overlying conglomerate layer (Fig, 1). Evidence from the conglomerate beds in the Chosen Supergroup suggests that diagenetic conglomerates are formed by in situ subsurface fragmentation of limestone layers and rounding of the fragments. In situ subsurface fragmentation may be primarily due to compaction, dewatering (upward-moving pore fluids), and dissolution, accompanying volume reduction. This process commonly occurs under the conditions of (1) alternating layers of carbonate-rich and carbonate-poor sediments and (B) early differential cementation of carbonate-rich layers. Differential cementation commonly takes place between alternating beds of carbonate-rich and clay-rich layers, because high carbonate content promotes cementation, whereas clay inhibits cementation. After deposition of alternating beds and differential cementation, with progressive burial, upward-moving pore fluid may raise pore-pressure in the upper part of limestone layers, due to commonly overlying impermeable shale layers (or beds). The high pore-pressure may reinforce propagation of fragmentation and cause upward-expulsion of pore fluid which probably produces edgewise fabric of tabular clasts. The fluidized flow then extends laterally, causing reorientation and further rounding of clasts. This process is analogous to that of autobrecciation, which can be analogously termed autoconglomeration. This is a fragmentation and rounding process whereby earlier semiconsolidated portions of limestone are incorporated into still fluid portions. The rounding may be due mainly to immiscibility and surface tension of lime-mud. The progressive rounding of the fragmented clasts probably results from grain attrition by fluidized flow. A synthetic study of limestone conglomerate beds in the Chosen Supergroup suggests that very small percent of the conglomerate layers are of depositional origin, whereas the rest, more than $80\%$, are of diagenetic origin. The common occurrence of diagenetic conglomerates warrants further study on limestone conglomerates elsewhere in the world.

  • PDF

Fluid Inclusions Trapped in Xenoliths from the Lower Crust/upper Mantle Beneath Jeju Island (I): A Preliminary Study (제주도의 하부지각/상부맨틀 기원의 포획암에 포획된 유체포유물: 예비연구)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.34-45
    • /
    • 2004
  • This paper describes the textural relations of mantle xenoliths and fluid inclusions in mantle-derived rocks found in alkaline basalts from Jeju Island which contain abundant ultramafic, felsic, and cumulate xenoliths. Most of the ultramafic xenoliths are spinel-lherzolites, composed of olivine, orthopyroxene, clinopyroxene and spinel. The felsic xenoliths considered as partially molten buchites consist of quartz and plagioclase with black veinlets, which are the product of ultrahigh-temperature metamorphism of lower crustal materials. The cumulate xenoliths, clinopyroxene-rich or clinopyroxene megacrysts, are also present. Textural examination of these xenoliths reveals that the xenoliths are typically coarse grained with metamorphic characteristics, testifying to a complex history of evolution of the lower crust/upper mantle source region. The ultramafic xenoliths contain protogranular, porphyroclastic and equigranular textures with annealing features, indicating the presence of shear regime in upper mantle of the Island. The preferential associations of spinel and olivine with large orthopyroxenes suggest a previous high temperature equilibrium in the high-Al field and the original rock-type was a Al-rich orthopyroxene-bearing peridotite without garnet. Three types of fluid inclusions trapped in mantle-derived xenoliths include CO$_2$-rich fluid (Type I), multiphase silicate melt (glass ${\pm}$ devitrified crystals ${\pm}$ one or more daughter crystals + one or more vapor bubbles) (Type II), and sulfide (melt) inclusions (Type III). C$_2$-rich inclusions are the most abundant volatile species in mantle xenoliths, supporting the presence of a separate CO$_2$-rich phase. These CO$_2$-rich inclusions are spatially associated with silicate and sulfide melts, suggesting immiscibility between them. Most multiphase silicate melt inclusions contain considerable amount of silicic glass. reflecting the formation of silicic melts in the lower crust/upper mantle. Combining fluid and melt inclusion data with conventional petrological and geochemical information will help to constrain the fluid regime, fluid-melt-mineral interaction processes in the mantle of the Korean Peninsula and pressure-temperature history of the host xenoliths in future studies.

The Contact Metamorphism Due to the Intrusion of the Ogcheon and Boeun granites (옥천화강암과 보은화강암 관입에 의한 접촉변성작용)

  • 오창환;김창숙;박영도
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.133-149
    • /
    • 1997
  • In the metapelites around the Ogcheon granite, the metamorphic grade increases from the biotite zone through the andalusite zone to the sillimanite zone towards the intrusion contact. In the metabasites around the Boeun granite, the metamorphic grade increases from transitional zone between the greenchist and amphibolite facies through the amphibolite facies to the upper amphibolite facies towards the intrusion contact. In the Doiri area locating near the intrusion contact of the Boeun granite, sillimanite- and andalusite-bearing metapelites are found with in 500 m away from the contact. The evidence described above indicates that the Ogcheon and Boeun granites caused low-P/T type contact metamorphism to the country rocks. The P-T condition of contact metamorphism due to the intrusion of the Ogcheon granite is $540{\pm}40^{circ}C, 2.8{\pm}0.9$ kb. The temperature condition of contact metamorphism due to the intrusion of the Boeun granite is $698{\pm}28^{\circ}C$. The wide compositional range of amphibole and plagioclase in the metabasites around the Boeun granite is due to the immisibility gab of amphibole and plagioclase and unstable relict composition resulted from an incomplete metamorphic reaction. The compositional range of stable amphibole and plagioclase decreases as a metamorphic grade increases due to a close of immiscibility gab. The thermal effect of contact metamorphism due to the intrusion of the Ogcheon and Boeun granites, are calculated using the CONTACT2 program based on a two dimensional finite difference method. In order to estimate the thermal effect of an introduced pluton, a circle with 10 km diameter and a triangle with 20 km side are used for the intrusion geometries of the Ogcheon granite and the Boeun granite, respectively. The results from the field and modeling studies suggest that the intrusion temperatures of the Ogcheon granite close to $800^{\circ}C$ and the intrusion temperature of the Boeun granite is higher than $1000^{\circ}C$. However, the intrusion temperatures can be lower than the suggested temperature, if the geothermal gradient prior to the intrusion of the Ogcheon and Boeun granites was higher than the normal continental grothermal gradient.

  • PDF