• Title/Summary/Keyword: immersiveness

Search Result 35, Processing Time 0.023 seconds

Tabletop Collaborative Game Design based on Inclusive Education Methodology (통합 교육 방법론에 기반한 테이블탑 협업 게임 디자인)

  • Im, Seunghyen;Kim, Hyoungnyoun;Park, Ji-Hyung
    • Journal of the HCI Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Tabletop games have been applied to improve the ability of social collaboration based on the characteristics that more than two people simultaneously interact on the tabletop. Especially, the tabletop games can be used as an educational tool for children with autism when it is implemented by considering educational and psychological models for children's behavioral characteristics. However, the previous collaborative games were designed for only disabled children so that it is hard to reflect cognitive and humanistic effects in inclusive education, where disabled children and non-disabled children interact in a same spatiotemporal environment. In this paper, therefore, we design a collaborative game on a multi-touch tabletop to enable spontaneous communication between disabled children and non-disabled children. Through user study, we evaluate the improvement in terms of the positive interaction and the degree of attention by comparing with a conventional collaborative game(e.g., a board game). We found that negative interaction including disabled children's abnormal behavior decreased and positive interaction such as body gestures and verbal communications increased. In addition, the tabletop game supported high immersiveness to all children by deriving equal level of attention time including individual and joint attention. We anticipate that the proposed game design can be utilized to develop collaborative contents for people with differences on sociality and cognitive ability.

A Motion-driven Rowing Game based on Teamwork of Multiple Players (다중 플레이어들의 팀워크에 기반한 동작-구동 조정 게임)

  • Kim, Hyejin;Shim, JaeHyuk;Lim, Seungchan;Goh, Youngnoh;Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.73-81
    • /
    • 2018
  • In this paper, we present a motion-driven rowing simulation framework that allows multiple players to row a boat together by their harmonized movements. In the actual rowing game, it is crucial for the players to synchronize their rowing with respect to time and pose so as to accelerate the boat. Inspired by this interesting feature, we measure the motion similarity among multiple players in real time while they are doing rowing motions and use it to control the velocity of the boat in a virtual environment. We also employ game components such as catching an item which can accelerate or decelerate the boat depending on its type for a moment once it has been obtained by synchronized catching behaviors of the players. By these components, the players can be encouraged to more actively participate in the training for a good teamwork to produce harmonized rowing movements Our methods for the motion recognition for rowing and item catch require the tracking data only for the head and the both hands and are fast enough to facilitate the real-time performance. In order to enhance immersiveness of the virtual environment, we project the rowing simulation result on a wide curved screen.

Virtual Reality for Dental Implant Surgical Education (가상현실을 이용한 치과 임플란트 수술 교육)

  • Moon, Seong-Yong;Choi, Bong-Du;Moon, Young-Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.169-174
    • /
    • 2016
  • In this study, we evaluated the virtual reality model for dental implant surgery and discussed about the method to make the surgical environment for virtual reality with practical patient data. The anatomical model for patient face was fabricated by facial and oral scan data based on CT data. The simulation scenario was composed step by step fashion with Unity3D. From incision and sinus bone graft procedure which is needed to this patient model to implant installation and bone graft was included in this scenario. We used the HMD and leap motion for immersiveness and feeling of real operation. Twenty training doctor was attended this simulation study, and surveyed their satisfactory results by questionnaire. Implant surgery education program was showed the possibilities of educational tool for dental students and training doctors. Virtual reality for surgical education with HMD and leap motion had advantages, in terms of cheap prcie, easy access.

The Effect of Gesture Based Interface on Presence Perception and Performance in the Virtual Reality Learning Environment (가상현실 학습환경에서 동작기반 인터페이스가 실재감 지각 및 수행에 미치는 효과)

  • Ryu, Jeeheon;YU, SEUNGBEOM
    • (The)Korea Educational Review
    • /
    • v.23 no.1
    • /
    • pp.35-56
    • /
    • 2017
  • This study is to examine the effects of gesture based interface and display methods to make an effective virtual learning environment. The gesture based interface can provide interactive interface to make objects in the virtual learning environment by generating natural movement of users' gesture. This natural functionality leads users to apply natural movements as they do in real actions. Because of the natural user interface, the gesture based interface is expected to maximize learning outcomes. This study examined how the gesture based interface can be used when a head mounted display is applied for a virtual reality learning environment. For this study 44 colleagues students were participated. Two display methods (head mounted display vs. monitor) and two interface (gesture based interface vs. joystick) were tested to identify which might be more effective. The study was applied to different learning tasks which require different levels of spatial perception. The dependent variables are three constructs of virtual presence (spatial perception, immersiveness, and realness) and task completion time and recall tests. This study discussed potential disadvantages of gesture based interface while it showed positive usages of gesture based interface.

Methodologies for Enhancing Immersiveness in AR-based Product Design (증강현실 기반 제품 디자인의 몰입감 향상 기법)

  • Ha, Tae-Jin;Kim, Yeong-Mi;Ryu, Je-Ha;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.37-46
    • /
    • 2007
  • In this paper, we propose technologies for enhancing the immersive realization of virtual objects in AR-based product design. Generally, multimodal senses such as visual/auditory/tactile feedback are well known as a method for enhancing the immersion in case of interaction with virtual objects. By adapting tangible objects we can provide touch sensation to users. A 3D model of the same scale overlays the whole area of the tangible object so the marker area is invisible. This contributes to enhancing immersion. Also, the hand occlusion problem when the virtual objects overlay the user's hands is partially solved, providing more immersive and natural images to users. Finally, multimodal feedback also creates better immersion. In our work, both vibrotactile feedback through page motors, pneumatic tactile feedback, and sound feedback are considered. In our scenario, a game-phone model is selected, by way of proposed augmented vibrotactile feedback, hands occlusion-reduced visual effects and sound feedback are provided to users. These proposed methodologies will contribute to a better immersive realization of the conventional AR system.