• Title/Summary/Keyword: immersion ultrasonic characterization

Search Result 4, Processing Time 0.018 seconds

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

Material Characterization of Weld-Zone Using Poisson's Ratio Distribution

  • Park, Jin-Ha;Kim, Young-H.;Lee, Seung-S.;Kim, Young-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.586-590
    • /
    • 2009
  • Poisson's ratio, one of elastic constants of elastic solids, has not attracted attention due to its narrow range and difficult measurement. Transverse wave velocity as well as longitudinal wave velocity should be measured for nondestructive measurement of Poisson's ratio. Rigid couplants for transverse wave is one of obstacle for scanning over specimen. In the present work, a novel measurement of Poisson's ratio distribution was applied. Immersion method was employed for the scanning over the specimen. Echo signals of normal beam longitudinal wave were collected, and transverse wave modes generated by mode conversion were identified. From transit time of longitudinal and transverse waves, Poisson's ratio was determined without the information of specimen thickness. Poisson's ratio distribution of the carbon steel weldment was mapped. Heat affected zone of the weldment was clearly distinguished from base and filler metals.

Characterization of Sprays used Ultrasonic Vibrant Plate with the Surface roughness (초음파 진동판의 표면조도에 따른 분무특성에 관한 연구)

  • Lee, Jun-Baek;Jeon, In-Kon;Jeon, Heung-Shin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.732-737
    • /
    • 2000
  • The purpose of this study is to compare the SMD(Sauter mean diameter) with different vibrant plates. Each vibrant plates have different surface roughness. Also liquid film thickness are measured for explanation how to concern atomization. Ultrasonic waves is used for vibration. Immersion liquid method is used for the measure of SMD and also liquid film thickness is measured using of point needle method. Distilled water and gasoline fuel are used to liquids. Supplied liquid flow rates are $18{\sim}296cc/min$. Centerline average roughness of vibrant plates are 0.5, 2.0, 4.7, $9.5\;{\mu}m$ and diameter of vibrant plate is 60mm. In result, good atomization of liquid is obtained in widen flow rates. The mean droplet size is increased in orders of 4.7, 2.0. 9.5, $0.5\;{\mu}m$ surface roughness. Distilled water has a big mean droplet size than gasoline fuel in low flow rate. Above the 78cc/min flow rates, distilled water has a small mean droplet size than gasoline fuel. Liquid films changes are measured with ultrasonic power. Also, cavitation effect on sprays is observed.

  • PDF

Measurements of Ultrasonic Velocity and Attenuation by Signal Processing Techniques in Time and Frequency Domains (시간 및 주파수 영역에서의 신호 처리 기술에 의한 초음파 속도와 감쇠의 측정)

  • Jang, Young-Su;Kim, Jin-Ho;Jeong, Hyun-Jo;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.118-128
    • /
    • 1999
  • There are many ultrasonic measurement methods that are used in nondestructive testing applications. Some typical applications include material property determination, microstructural characterization. and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly required in these applications. The accuracy and repeatability of testing results are dependent on both the hardware used to generate and receive the ultrasonic waves and on the analysis software for calculating these parameters. In this study, five analysis algorithms were implemented on a computer for measuring wave speed in a pulse echo. immersion testing configuration. In velocity measurements comparisons were made between the overlap. cross-correlation. Fourier transform. Hilbert transform, wavelet transform algorithms. Velocity measurement was applied to an isotropic steel sample using the five analysis algorithms. Frequency-dependent phase/group velocity and attenuation were also measured using the Fourier transform and wavelet transform algorithms on a composite laminate containing voids.

  • PDF