• Title/Summary/Keyword: immersion time

Search Result 651, Processing Time 0.027 seconds

Damage Monitoring of Concrete With Acoustic Emission Method for Nuclear Waste Storage: Effect of Temperature and Water Immersion

  • Park, June-Ho;Kwon, Tae-Hyuk;Han, Gyeol;Kim, Jin-Seop;Hong, Chang-Ho;Lee, Hang-Lo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.297-306
    • /
    • 2022
  • The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.

Change of Interfacial properties by the Fiber Degradation in the Fiber Reinforced Composites (섬유강화 복합재료에서 섬유열화에 따른 계면특성의 변화)

  • Moon, Chang-Kwon;Kim, Young-Dae;Roh, Tae-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.31-41
    • /
    • 1998
  • Single fiber fragmentation technique was used to evaluate the change of interfacial properties by degradation of fiber tensile strength in the fiber reinforced composites. The influences of fiber tensile strength on the interfacial properties have been evaluated by the fragmentation specimens(weak fiber samples) of glass fiber/epoxy resin that was made using the pre-degraded glass fiber in distilled water at $80^{circ}C$ for specified periods. The effects of the immersion time on the interfacial properties in the distilled water at $80^{circ}C$ also have been evaluated by the fragmentation specimens(original fiber samples) of glass fiber/epoxy resin that was made using the received glass fiber. As the result, the tensile strength of glass fiber was decreased with the increasing of the treatment time in the distilled water at $80^{circ}C$ and the interfacial shear strength was independent of the change of the glass fiber strength in the single fiber fragmentation test. But in the durability test using the single fiber fragmentation specimen, interfacial shear strength decreased with the increasing of the immersion time in distilled water ar $80^{circ}C$. And it turned out that the evaluating of interfacial shear strength using original fiber tensile strength was valuable in the durability test for the water environment by the single fiber fragmentation technique.

  • PDF

Osmotic Concentration of Apples and Its Effect on Browning Reaction during Air Dehydration (사과의 삼투압농축과 열품건조시 갈색화 반응에 미치는 효과)

  • 김명환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 1990
  • Internal mass transfer during osmotic concentration of apples in sugar solutions was exami-ned as a function of concentration temperature and immersion time of those solutions using moisture loss sugar gain molality and rate parameter. Influence of osmotic concentration processes on browning reaction was also evaluated compared to control In creasin the concen-tration and temperature of sugar solutions increased moistrue loss sugar gain molality and rate parameter. Water loss was rapid early in the process and then levelled off, The same phenomena were occurred on sugar gain only in higher concentration(60$^{\circ}$ brix). IN lower concentration (30$^{\circ}$brix) sugar gain was gradually increased during whole process. Moisture loss during osmotic concentration using a sugar solution(60$^{\circ}$ brix 6$0^{\circ}C$) with 180min immer-sion time was 45.79% Effect of osmotic concentration befor air dried to 4% M.C(wet basis) on browning reaction was significant. Minimum browning reaction during air drying was carried out using a pretreatment such as osmotic concentration in sugar solution(60$^{\circ}$brix 45$^{\circ}C$) with 150min immersion time(O.D=0.01) compared to control(O.D=0.17)

  • PDF

Effects of in vitro culture types on regeneration and acclimatization of yellow poplar (Liriodendron tulipifera L.) from somatic embryos

  • An, Chan Hoon;Kim, Yong Wook;Moon, Heung Kyu;Yi, Jae Seon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.110-118
    • /
    • 2016
  • We compared germination efficiency for somatic embryos (SE) of Liriodendron tulipifera using semi-solid (SS), temporary immersion bioreactors (TIB), and continuous immersion bioreactors (CIB) to produce vigorous plants. The bioreactors were designed to be immersed in liquid media with plantlets with an adjustable immersion time. TIB and CIB improved germination rates up to 80.86% and 95.21%, respectively, however, CIB produced more hyperhydric plantlets than TIB. The height of plantlets in TIB was significantly higher than for those in CIB. Fresh weights of plantlets grown in CIB of were significantly lower than for those grown in TIB. The lowest chlorophyll concentration was found in in vitro plantlets from CIB. We examined abnormally developed leaves, stems, and apical zones of in vitro plantlets that were produced in CIB. Among the three types, SS showed the highest stomatal density and the shortest stomatal length in in vitro plantlets. After acclimatization, plants from CIB exhibited the lowest values in biomass, such as height, root collar diameter, leaf fresh weight, leaf length, leaf width, petiole length, petiole diameter, and leaf area. Photosynthesis and transpiration rates of ex vitro plants were not significantly different among the three culture types, but stomatal conductance was higher in TIB than in the SS and CIB. Therefore, the results suggest that TIB is the preferable bioreactor to improve in vitro plantlet regeneration of L. tulipifera. TIB-originated plants showed higher growth rate than SS and CIB after transferring to soil.

A comparative study on the accuracies of resin denture bases and metal denture bases

  • Park Hwee-Woong;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.250-259
    • /
    • 2001
  • Since the late 1930s, acrylic resins have been the materials of choice for the fabrication of complete denture bases. It has excellent esthetic properties, adequate strength, low water sorption, and low solubility. But acrylic resin has disadvantage of processing shrinkage that reduces denture retention and accuracy of denture occlusion. Metals also have been used in denture base material. Metals used in denture bases display excellent strength and dimensional stability. The major disadvantages associated with metal denture bases include increased cost, difficulty in fabrication, compromised esthetic qualities, and inability to re-base. The purpose of this study is to compare the artificial tooth movements of complete dentures with resin bases and metal bases after curing, deflasking, polishing immersion in water for 1 week and 4 weeks. Twenty-four maxillary complete resin denture bases with artificial teeth were fabricated. Twelve of them were resin based and other twelve of them were metal based. Fine crosses were marked on the incisal edges of right central incisors and distobuccal cusps of be second molars. Measurements were done for the changes of distances of reference points at the time of wax denture, after deflasking after decasting after polishing after immersion in water for 1 week and 4 weeks Meaurements were done to the accuracy of 0.001mm with a measuring microscope. The results were as follows : 1. Metal base showed significantly less tooth movement than resin base after curing and decasting (p<0.01). 2. Metal base showed significantly less tooth movement than resin base after polishing (p<0.01). 3. After immersion in water for 1 week and 4 weeks, metal base showed less movement than resin base. Difference was significant for anterior-posterior distances (p<0.01), but not significant for molar-to-molar distance (p>0.01). 4. 1 week and 4 weeks of immersion failed to compensate the initial processing shrinkage of metal and resin bases (p>0.01).

  • PDF

Effects of Education and Mothers' Perceptions regarding English Education on Preschoolers' Interests in Learning English: A Comparison between General Kindergartens and English Immersion Institutes (기관 내외 교육과 어머니의 영어교육 신념이 유아의 영어 흥미에 미치는 영향: 일반유치원과 영어학원 유치부의 비교)

  • Choi, Naya;Park, You-Me;Choi, Jisu
    • Human Ecology Research
    • /
    • v.58 no.4
    • /
    • pp.585-599
    • /
    • 2020
  • This study investigated children's interests in learning English, affected by educational activities in and out of institutes, and mothers' perceptions regarding early childhood English education. We recruited, 253 mothers of 3- to 5-year-old children in either general kindergartens or English immersion institutes. They answered questions on socioeconomic status, perceived interest in English by their children, their perceptions regarding early childhood English education, and English education outside institutes. In addition, 42 English teachers provided information within institutes such as class time per week, teacher-pupil rate, and language use policy during class. The collected data were analyzed through SPSS 22 for frequency analysis, descriptive statistics, independent t-test, and hierarchical multiple regression analysis. The major findings are as follows. First, the two groups were in distinct learning environment. Second, mothers' perceptions and outside-institute activities were significantly different between the two groups. Third, the English interests of children at both institutes were influenced by mothers' worries and at-home English interactions. Fourth, education within institutes did not affect both group's English interests. Fifth, private education and socioeconomic status did not affect both group's English interests. Lastly, only the children's interests in English immersion institutes were affected by gender and mother's perceived necessities. Focusing children's interests, this study helps in understanding young children's affective aspects regarding learning English. The findings are expected to be a guideline for each home and institute to increase children's interest in learning English.

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Effects of Immersion Temperatures and Times on Chestnut Fruit and Mortality of the Chestnut Weevil, Curculio sikkimensis Heller (밤바구미 방제를 위한 온도 및 시간별 침지처리 효과와 종실 변화)

  • Kim, Young-Jae;Kim, Hyun Kyung;Lee, Ka-Soon;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.339-346
    • /
    • 2014
  • To control populations of the chestnut weevil, Curculio sikkimensis Heller, the effects of various immersion temperatures and times on the chestnut weevil were tested. The effects of immersion treatments on chestnut fruits were also analyzed. The mortality levels of C. sikkimensis larvae were evaluated at various temperatures ($30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $45^{\circ}C$, and $50^{\circ}C$) and time intervals (1, 2, 3, 5, 7, 10, 15, 22, and 24 h). Changes in the chestnut fruit due to the immersion treatment were measured in terms of color (lightness, redness, and yellowness), physiological effects (germination rate and decay rate), hardness, and change in constituent properties (moisture content, free sugar content, and tannin content). Mortality levels of C. sikkimensis larvae after immersion treatment at $30^{\circ}C$ were over 70% and 100% after 2 h and 7 h, respectively. Color (lightness, redness, and yellowness) of the chestnut fruits was not significantly different at $30^{\circ}C$ and $35^{\circ}C;$ however, the color was affected at temperatures over $40^{\circ}C$. The germination rate of the fruit was not affected by the immersion treatments, but the decay rate at $40^{\circ}C$ increased with an increase in immersion time. The hardness of the fruits decreased with an increase in immersion times and temperatures. These results can be used in the future for developing methods for the control of chestnut weevil populations.

Anti-microbial Effects of Washing and Chlorine Treatments on Fresh Fruits (과일류의 염소 소독 농도 및 세척 횟수에 따른 미생물 제거 효과)

  • Park, Jong-Sook;Nam, Eun-Sook;Park, Shin-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.2
    • /
    • pp.176-183
    • /
    • 2008
  • This study examined the anti-microbiological effects of chlorine treatment on the surface of fresh fruits, in order to improve microbiological safety in school foodservice operations. Non-peeled fruit(strawberries) and peeled fruit(bananas) were treated with different concentrations of chlorinated water and rinsing numbers, followed by microbiological testing. The fruits were immersed at different concentrations of chlorinated water(0 ppm, 50 ppm, and 100 ppm) and durations(3 min and 5 min), and were then rinsed with tap water(one time, two times, or three times). The total viable cell counts of both the strawberries and bananas ranged from $10^3$ CFU/g to $10^4$ CFU/g, and coliform levels ranged from $10^2$ CFU/g to $10^3$ CFU/g. As the chlorine concentration, immersion time, and rinsing number increased, anti-microbiological activity increased. The largest microbial reduction was shown with immersion for 5 min in 100 ppm chlorinated water and three rinsings. In the strawberries, this treatment reduced the initial population of total viable cells and coliforms by 3.29 log CFU/g and to an undetectable level, respectively, no total viable cells or coliforms were detected on the banana surface following this treatment. However, after a sterilization treatment with immersion for 5 min in 50 ppm chlorinated water and three rinsings, the total viable cell counts and coliform counts of the strawberries and bananas decreased to acceptable levels, based on the microbiological standards for ready-to-eat foods. Overall, it was shown that the sterilization treatment of 50 ppm chlorinated water, soaking for 5 min, and three rinsings provided an effective reduction in surface microbes, and enhanced the microbiological safety of the fruit.

Stress-Strain Relationship of Alkali-Activated Hwangtoh Concrete under Chemical Attack (화학적 침해를 받은 알칼리활성 황토콘크리트의 응력-변형률 관계)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • This study examined the effect of chemical attack on the stress-strain relationship of alkali-activated Hwangtoh concrete. Water-to-binder ratio and air content were selected as mixture parameters. The stress-strain relationship of concrete was measured at chemical immersion times of 0, 7, 28, 56, and 91 days from an age of 28 days. Based on the test results, the reduction in compressive strength of alkali-activated hwangtoh concrete owing to chemical attack was formulated. In sddition the present study demonstrated that the stress-strain behavior of concrete under chemical attack is significantly dependent on the air content and chemical immersion time, indicating the rate of decrease of modulus of elasticity was greater than that of compressive strength at the same immersion time. As a result, the stress-strain behavior of concrete under chemical attack was significantly inconsistent with the conventional models specified in the CEB-FIP provision.