• Title/Summary/Keyword: iminoctadine tris(albesilate)

Search Result 7, Processing Time 0.023 seconds

Protective Effect of Iminoctadine tris(albesilate) and Kresoxim-methyl Fungicides to Citrus Postharvest Diseases caused by Penicillium spp. (저장 감귤의 부패에 관여하는 Penicillium spp.에 대한 Iminoctadine tris(albesilate)와 Kresoxym-methyl의 방제 효과)

  • Hyun, Jae-Wook;Lee, Seong-Chan;Ihm, Yang-Bin;Kim, Dong-Hwan;Ko, Sang-Wook;Kim, Kwang-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.37-44
    • /
    • 2001
  • The biological effects of the iminoctadine tris (albesilate) and kresoxim-methyl for the protection of citrus postharvest diseases caused by penicillium spp. were assayed. In vitro tests, $EC_{50}$ values of iminoctadine tris(albesilate) were $0.01{\sim}0.02\;and\;0.01{\mu}g$ a.i./mL against mycelial growth of P. italicum and P. digitatum, respectively, but iminoctadine tris(albesilate) at $0.64{\mu}g$ a.i. /mL inhibited a little mycelial growth of unknown Penicillium sp. which produced another symptom different to blue and green mold caused by P. italicum and P. digitatum, respectively. And against germination and growth of germ tube of P. italicum and P. digitatum, $EC_{50}$ value of iminoctadine tris(albesilate) was $0.0013{\sim}0.0025{\mu}g$ a.i./mL. But spore germination of unknown Penicillium spp. was not nearly inhibited at $0.2{\mu}g$ a.i./mL. $EC_{50}$ values of kresoxim-methyl were $0.08{\sim}0.16$, 0.04 and $0.16{\mu}g$ a.i./mL against mycelial growth of P. italicum, P. digitatum and unknown Penicillium sp., respectively, and $0.04{\sim}0.08{\mu}g$ a.i./mL and $0.01{\sim}0.02{\mu}g$ a.i./mL against germination and growth of germ tube of P. italicum and unknown Penicillium sp., and P. digitatum, respectively. Iminoctadine tris(albesilate) and kresoxim-methyl were markedly effective to control the postharvest disease by 7 days spray prior to harvest. When the fruits were sprayed with iminoctadine-tris(albesilate) ($200{\mu}g$ a.i./mL) and kresoxim-methyl ($155{\mu}g$ a.i./mL) 7 days prior to harvest and subsequently stored for 90 days, the percentage of diseased fruit by Penicillium spp. was $3.6{\pm}1.8%$ in treatment of kresoxim-methyl and $5.9{\pm}1.8%$ in iminoctadine-tris(albesilate), respectively. On the other hand, tile percentage of diseased fruit was relatively high, $20.3{\pm}10.0%\;and\;19.5{\pm}9.6%$ in thiophanate-methyl ($700{\mu}g$ a.i./mL) and non-treatment, respectively. Maximum residue amount (ppm) among fruits (flesh and peel) assayed 0, 30, 60 and 90 days after storage was 0.45 and 0.10 ppm in treatment of kresoxim-methyl and iminoctadine, respectively.

  • PDF

Effects of Several Fungicides on the Spore Growth Period of Alternaria dauci, a Carrot Black Leaf Blight Fungus, Using a Rezasulin-based Spore Survival Assay (Rezasulin 기반 포자 생존 검정법을 이용한 당근검은잎마름병균 Alternaria dauci의 포자 생장 시기에 따른 몇 가지 살균제의 효과)

  • Jiwon Do;Heung Tae Kim
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.131-138
    • /
    • 2024
  • The effects of five fungicides on the spore growth phase of Alternaria dauci, which causes carrot leaf blight, were tested using the spore viability assay (SVA) and agar dilution method (ADM). The average EC50 values for chlorothalonil against seven isolates of A. dauci examined by SVA and ADM were 14.21 ㎍/ml and more than 100 ㎍/ml. Dithianon and folpet also had lower EC50 values in SVA than in ADM, while iminoctadine trisalbesilate had lower EC50 value in ADM. For fluazinam, the EC50 values of SVA and ADM were 1.63 and 2.40 ㎍/ml, respectively. As EC50 values of five fungicides according to the spore growth phase of A. dauci KACC 42997, the efficacy of each fungicide as chlorothalonil, dithianon, and folpet decreased when treated after spore germination rather than when treated with spores before germination. However, iminoctadine tris-albesilate was more effective when treated after spores germinated than when treated before treatment. The excellent effect of fluazinam on the pathogen was maintained until A. dauci KACC 42997 was cultured in potato dextrose broth for 6 hr and the germ tube grew beyond the size of the spore. However, when treated with iminoctadine tris-albesilate and fluazinam after culturing for 12 hr, as the EC50 values of the two fungicides increased to 8.87 and 20.65 ㎍/ml, their efficacies decreased. The results of this study show that the treatment time of the fungicide should be determined by considering the effect of the fungicide on the spore growth phase of pathogens.

Control Effect of Alternative Fungicide Spraying System on Powdery Mildew Caused by Podosphaera xanthii on Greenhouse Cucumber (약제교호살포에 따른 시설재배 오이 흰가루병(Podosphaera xanthii) 방제효과)

  • Park, Se-Keun;Park, Bue-yong;Jeong, In-Hong;Jeon, Sung-wook;Ryu, Hyun-ju;Lee, Sang-bum
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.538-543
    • /
    • 2018
  • Powdery mildew caused by Podosphaera xanthii is a disease in cucurbit crops especially in green house. The objective of this study was to determine the effect of alternative fungicide spraying system for control of powdery mildew disease. We selected four fungicides with different mode of action and made three treatment combinations of each fungicide in 2017. Pyraclostrobin-flutianyl-penthiopyrad treatment showed the highest control value (87%) while, pyraclostrobin-pyraclostrobin-pyraclostrobin treatment showed the lowest control value (32.5%). So it seemed like the treatment was not suitable for control of powdery mildew. In 2018, pyraclostrobin of pyraclostrobin-flutianyl-penthiopyrad was replaced to contact fungicide called iminoctadine-tris-albesilate and compared control effect of two treatments. Two of the treatments showed similar control value (87.0% for pyraclostrobin, 89.0% for iminoctadine-tris-albesilate). These two tests in 2017 and 2018 indicated that alternative treatment of different fungicides is essential for controlling of powdery mildew and inhibiting development of fungicide resistance.

Chemical Fungicides and Bacillus siamensis H30-3 against Fungal and Oomycete Pathogens Causing Soil-Borne Strawberry Diseases

  • Park, Bo Reen;Son, Hyun Jin;Park, Jong Hyeob;Kim, Eun Soo;Heo, Seong Jin;Youn, Hae Ree;Koo, Young Mo;Heo, A Yeong;Choi, Hyong Woo;Sang, Mee Kyung;Lee, Sang-Woo;Choi, Sung Hwan;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.79-85
    • /
    • 2021
  • Chemical and biological agents were evaluated to inhibit Colletotrichum fructicola, Phytophthora cactorum, and Lasiodiplodia theobromae causing strawberry diseases. Mycelial growths of C. fructicola were gradually arrested by increasing concentrations of fungicides pyraclostrobin and iminoctadine tris (albesilate). P. cactorum and L. theobromae were more sensitive to pyraclostrobin compared to C. fructicola, but iminoctadine tris (albesilate) was not or less effective to limit P. cactorum or L. theobromae, respectively. Bacillus siamensis H30-3 was antagonistic against the three pathogens by diffusible as well as volatile molecules, and evidently reduced aerial mycelial formation of P. cactorum. B. siamensis H30-3 growth was declined by at least 0.025 mg/ml of pyraclostrobin. The two fungicides additively inhibited mycelial growths of C. fructicola, but not of P. cactorum and L. theobromae. B. siamensis H30-3 volatiles led to less growth of C. fructicola than one reduced by the fungicides. Taken together, in vitro antimicrobial activities of the two fungicides together with or without B. siamensis H30-3 volatiles may be cautiously incorporated into integrated management of strawberry diseases dependent on causal pathogens.

Detection of Fungicidal Activities against Alternaria dauci Causing Alternaria Leaf Spot in Carrot and Monitoring for the Fungicide Resistance (당근검은잎마름병균 Alternaria dauci에 대한 살균제 효과 검정 및 병원균 집단에 대한 저항성 검정)

  • Do, Jiwon;Min, Jiyoung;Kim, Yongsu;Park, Yong;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.61-71
    • /
    • 2020
  • With 32 fungicides, it was examined the inhibitory effects on the mycelial growth of Alternaria dauci KACC42997 causing Alternaria leaf blight of carrot. Showing the results of the agar dilution method, the fungicides belonging to C2, C5, G1, E2, and E3 group were excellent in inhibiting mycelial growth. Protective fungicides belonging to M group, except for iminoctadine tris-albesilate, and pyraclostrobin belonging to C3 group were effective in inhibiting spore germination of pathogens. The fungicides included into C2 group inhibiting succinate dehydrogenase activity and the G1 group inhibiting demethylase activity showed the excellent inhibitory effect on mycelial growth but the inhibitory effect of spore germination was very low. However, fluazinam belonging to C5 group was excellent in inhibiting spore germination as well as mycelial growth. Especially, when 100 ㎍/ml of fluxapyroxad belonging to the C2 group was treated, 47.1% of spore formation was inhibited on the medium. In comparison of the resistance factors of 3 fungicide groups, as G, C, and E group, in populations of A. dauci isolates collected from Gumi, Pyeongchang, and Jeju, resistance factor in the population of Jeju was the lowest. However, two isolates resistant to fludioxonil belonging to E2 group were found in the isolate group of Pyeongchang, and both showed cross-resistance to iprodione and procymidone.

Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1

  • Ryu, Hojin;Park, Hoon;Suh, Dong-Sang;Jung, Gun Ho;Park, Kyungseok;Lee, Byung Dae
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.215-219
    • /
    • 2014
  • Background: Biological control of plant pathogens using benign or beneficial microorganisms as antagonistic agents is currently considered to be an important component of integrated pest management in agricultural crops. In this study, we evaluated the potential of Bacillus subtilis strain HK-CSM-1 as a biological control agent against Colletotrichum panacicola. Methods: The potential of B. subtilis HK-CSM-1 as a biological control agent for ginseng anthracnose was assessed. C. panacicola was inoculated to ginseng plants and the incidence and severity of disease was assessed to examine the efficacy of the bacterium as a biological control against C. panacicola. Results: Inoculation of Panax ginseng plants with B. subtilis significantly suppressed the number of disease lesions of C. panacicola and was as effective as the chemical fungicide iminoctadine tris(albesilate). The antifungal activity of B. subtilis against C. panacicola was observed on a co-culture medium. Interestingly, treatment with B. subtilis did not significantly affect the diameter of the lesions, suggesting that the mechanism of protection was through the reduction in the incidence of infection related to the initial events of the infection cycle, including penetration and infection via spore germination and appressorium formation rather than by the inhibition of invasive growth after infection. Conclusion: Our results suggest that B. subtilis HK-CSM-1 can be used as an effective and ecologically friendly biological control agent for anthracnose in P. ginseng.

Control Activities of Fungicides Against Garlic White Rot Caused by Sclerotium cepivorum (마늘 흑색썩음균핵병에 대한 살균제의 작용 특성)

  • Kim, Heongjo;Kim, Heung Tae;Min, Yi Gi
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • In order to control garlic white rot (Sclerotium cepivorum), which threatens garlic production in farmers fields, soil solarization (solar sterilization), sclerotia germination inducers and effective microorganisms as biological control agents, and chemical fungicides have been used. Among them, fungicide has been largely used to reduce garlic white rot. In this study, the antifungal activities of five fungicides, prochloraz(a.i. 25%, EC), tebuconazole (a.i. 25%, WP), flutolanil (a.i. 15%, EC), iminoctadine tris-albesilate (a.i. 40%, WP) and isoprothiolane (a.i. 40%, EC) with different mode of action, in mycelial growth, sclerotia germination and sclerotia production, were tested. The inhibitory effects of the 5 fungicides on the mycelial growth, and sclerotia germination and production of garlic white rot pathogen (S. cepivorum T11-2) were investigated on potato dextrose agar (PDA) and their control efficacies were evaluated on garlic flakes. There was no mycelial growth of S. cepivorum T11-2 on PDA amended with $0.8{\mu}g\;mL^{-1}$ of prochloraz or $100{\mu}g\;mL^{-1}$ of tebuconazole. Also prochloraz and tebuconazole inhibited perfectively the sclerotia germination of the pathogen at 10 and $1.0{\mu}g\;mL^{-1}$, respectively. In spite of a very low activity of isoprothiolane in mycelial growth and sclerotia germination of S. cepivorum T11-2, it showed a good inhibitory activity against sclerotia production of S. cepivorum T11-2 on PDA amended with $1.67{\mu}g\;mL^{-1}$. Prochloraz, tebuconazole and flutolanil showed above 70% of control value when they were treated at $100{\mu}g\;mL^{-1}$ using the garlic flake cutting-method.