• Title/Summary/Keyword: imaging property

Search Result 154, Processing Time 0.036 seconds

Magnetic Resonance Elastography (자기 공명 탄성법)

  • Kim, Dong-Hyun;Yang, Jae-Won;Kim, Myeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.10-19
    • /
    • 2007
  • Conventional MRI methods using T1-, T2-, diffusion-, perfusion-weighting, and functional imaging rely on characterizing the physical and functional properties of the tissue. In this review, we introduce an imaging modality based on measured the mechanical properties of soft tissue, namely magnetic resonance elastography (MRE). The use of palpation to identify the stiffness of tissue remains a fundamental diagnostic tool. MRE can quantify the stiffness of the tissue thereby providing a objective means to measure the mechanical properties. To accomplish a successful clinical setting using MRE, hardware and software techniques in the area of transducer, pulse sequence, and imaging processing algorithm need to be developed. Transducer, a mechanical vibrator, is the core of MRE application to make wave propagate invivo. For this reason, considerations of the frame of human body, pressure and friction of the interface, and high magnetic field of a MRI system needs to be taken into account when designing a transducer. Given that the wave propagates through human body effectively, developing an appropriate pulse sequence is another important issue in obtaining an optimal image. In this review paper, we introduce the technical aspects needed for MRE experiments and introduce several applications of this new field.

  • PDF

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.

A study on electrical response property of photoconductor film for x-ray imaging sensor (X선 영상센서 적용을 위한 광도전체 필름의 전기적 응답특성 연구)

  • Kang, Sang-Sik;Kim, Chan-Wook;Lee, Mi-Hyun;Lee, Kwang-Ok;Moon, Yong-Soo;An, Sung-A;No, Ci-Chul;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.29-33
    • /
    • 2009
  • Recently, the compound materials(a-Se, $HgI_2$, PbO, CdTe, $PbI_2$, etc.) that are used in flat panel x-ray imager have been studied for digital x-ray imaging. In this paper, the signal detection properties of $HgI_2$ and a-Se conversion layer, are compared. The thick $HgI_2$ film is fabricated by special particle-in-binder method and the conventional vacuum thermal evaporation is used for a deposition of a-Se film. And an electrical characteristic measurements were investigated about leakage current, signal response property and x-ray sensitivity. From the experimental results show that the $HgI_2$ film has a low operation voltage and high signal generation than that of a-Se.

  • PDF

Robust and Secure InIm-based 3D Watermarking Scheme using Cellular Automata Transform (셀룰러 오토마타 변환을 이용한 집적영상 기반의 강인하고 안전한 3D 워터마킹 방법)

  • Piao, Yong-Ri;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1767-1778
    • /
    • 2009
  • A robust and secure InIm(Integral imaging)-based 3D watermarking scheme using cellular automata transform (CAI) is proposed. In the InIm-based 3D watermarking scheme, the elemental image array (EIA) watermark for the target watermark which has to be detected, is synthesized from the computational pickup process of InIm and embedded in a cover image. The EIA watermark can provide a robust reconstruction of the target watermark However, the 3D property of the EIA watermark causes a weakening of the security. To overcome this problem, the proposed method uses the CAT domain to embed and extract the EIA watermark in the cover image. The use of CAT significantly improves the security for our watermarking algorithm using a single secure key only. Experiments are presented to show that the proposed scheme shows robust and secure performances against various attacks.

Study on Infrared Image Generation for Different Surface Conditions with Different Sensor Resolutions (물체의 표면 상태와 센서의 해상도에 따른 적외선 영상 구현 연구)

  • Choi, Jun-Hyuk;Shin, Jong-Mook;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.342-349
    • /
    • 2010
  • This paper is a foundation work in developing a software for generating infrared images from a scene with various objects. The spectral radiance received by a remote sensor is consisted of the self-emitted, reflected and scattered components. In general, the self-emitted component is the most important part for generating Infrared signatures from the object. In this paper, the infrared image generation considering various surface temperature and optical surface property of a flat plate is demonstrated in MWIR($3{\sim}5{\mu}m$) and LWIR($8{\sim}12{\mu}m$) regions for different spatial resolutions of the images. Resulting spectral radiance values in the MWIR($3{\sim}5{\mu}m$) and LWIR($8{\sim}12{\mu}m$) regions arrived at the infrared sensor are compared numerically and graphically by recognizing that they are strongly dependent on the surface conditions such as the surface temperature and the surface emissivity. And these infrared images are also shown to be strongly dependent on the resolutions of the infrared imaging devices as well. This study reveals that the surface conditions are more dependent on the radiance level from the surface while the resolution of the imaging device is more responsible for identifying the shape of object.

Comparison of Aerosol Optical Thicknesses by MODIS and MI in Northeast Asia (동북아시아 지역에서 MODIS와 MI에 의한 에어로졸 광학두께 비교)

  • Kim, Eun-kyu;Lee, Kyu-Tae;Jung, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.607-615
    • /
    • 2017
  • The aerosol optical thickness data retrieved by Moderate Resolution Imaging Spectrometer (MODIS) of Terra & Aqua and Meteorological Imager (MI) of Communication Ocean and Meteorological Satellite (COMS) are analyzed and compared with the measurement data of Aerosol Robotic Network (AERONET) in Northeast Asia. As the result, the aerosol optical thickness retrieved by MODIS and MI were well agreed at ocean region but quite different at cloud edge and barren surface. The reason was that MODIS aerosol optical thickness was retrieved using the visible and infrared channels but MI was retrieved with the visible channel only. Consequentially, the thin cloud be misinterpreted as aerosol by MI and the difference between MODIS and MI aerosol optical thicknesses could be occurred with Normal Distribution Vegetation Index (NDVI) and land surface property. Therefore, the accuracies of clear/cloud region and surface reflectivity are required in order to improve the aerosol optical thickness algorithm by MI.

Elastic Imaging of Material Surface by Ultrasonic Atomic Force Microscopy (초음파 원자 현미경을 이용한 재료 표면의 탄성 이미지화)

  • Kim, C.S.;Park, Tae-Sung;Park, It-Keun;Lee, Seung-Seok;Lee, C.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • The ultrasonic atomic force microscope(UAFM) has been developed in order to enhance the characterization technology for nano-scale surface combining ultrasonic property to atomic force microscope. This UAFM technique enables elasticity imaging due to the physical properties on the heterogeneous surface in addition to the novel topography of surface height in the nano-surface layer. In this study, the prototype UAFM system was constructed and applied to several materials, silicon deposited wafer, spherodized cold heading steel, and carbon fiber reinforced plastic specimen. Clear elastic contrast was successfully obtained using this developed prototype UAFM.

Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART (USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원)

  • Roh, Young-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Jong-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

Evaluation of imaging reformation with cone beam computed tomography for the assessment of bone density and shape in mandible (Cone beam형 전산화단층영상에서 골의 형태와 밀도의 평가)

  • Hong, Sang-Woo;Kim, Gyu-Tae;Choi, Yon-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • Purpose: Diagnostic estimation of destruction and formation of bone has the typical limit according to capacity of x-ray generator and image detector. So the aim of this study was to find out how much it can reproduce the shape and the density of bone in the case of using recently developed dental type of cone beam computed tomography, and which image is applied by new detector and mathematic calculation. Materials and Methods: Cone beam computed tomography (PSR 9000N, Asahi Roentgen Ind. Co., Ltd., Japan) and soft x-ray radiography were executed on dry mandible that was already decalcified during 5 hours, 10 hours, 15 hours, 20 hours, and 25 hours. Estimating and comparing of those came to the following results. Results: The change of inferior border of mandible and anterior border of ramus in the region of cortical bone was observed between first 5 and 10 hours of decalcification. The reproduction of shape and density in the region of cortical bone and cancellous bone can be hardly observed at cone beam computed tomography compared with soft x-ray radiography. The difference of decrease of bone density according to hours of decalcification increase wasn't reproduced at cone beam computed tomography compared with soft x-ray radiography. Conclusion: CBCT images revealed higher spatial resolution. However, contrast resolution in region of low contrast sensitivity is the inferiority of images' property.

  • PDF

Development of an Imaging Processing System for Automation of a Callus Inoculation (식물조직배양 자동화를 위한 영상처리장치 개발)

  • Chung, Suk-Hyun;No, Dae-Hyun;Song, Jae-Kwan
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2009
  • This study was conducted to develop an imaging processing system of inoculation processing of a lily callus. The image processing system was composed of a camera, a image processing board, and etc. And the illuminance always decided by setting up 55W/3 wavelength lamp respectively on all aspects and the side was maintained by the lighting part. The image characteristic was examined according to each frame of RGB,therefore the culture vessel was able to be separated with B frame. The required time was 2.2 seconds in one cycle from the image acquisition to obtaining the result. The recognition rate of the container was 100%, and the result of image processing showed that the recognition success rate of lily callus was 93%.