• Title/Summary/Keyword: imaging processing

Search Result 1,001, Processing Time 0.03 seconds

Geometric Assessment and Correction of SPOT5 Imagery

  • Kwoh, Leong Keong;Xiong,, Zhen;Shi, Fusheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.286-288
    • /
    • 2003
  • In this paper, we present our implementation of the direct camera model (image to ground) for SPOT5 and use it to assess the geometric accuracy of SPOT5 imagery. Our assessment confirms the location accuracy of SPOT5 imagery (without use of GCPs) is less than 50m. We further introduce a few attitude parameters to refine the camera model with GCPs. The model is applied to two SPOT5 supermode images, one near vertical, incidence angle of 3 degrees, and one far oblique, incidence angle of 27 degrees. The results show that accuracy (rms of check points) of about one pixel (2.5m) can be achieved with about 4 GCPs by using only 3 parameters to correct the yaw, pitch and roll of the satellite.

  • PDF

Panorama Image Processing for Condition Monitoring with Thermography in Power Plant (공업플랜트의 상태감시를 위한 열화상 파노라마 이미지 처리기법 연구)

  • Jeon, Byoung-Joon;Kim, Tae-Hwan;Kim, Soon-Geol;Mo, Yoon-Syub;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnels who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography.

Evaluation of Fabric Pilling Using Hybrid Imaging Methods

  • Kim Sung-Min;Park Chang-Kyu
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2006
  • A study has been made on the quantification and evaluation of fabric pilling using two-dimensional and three-dimensional hybrid imaging methods. Two-dimensional imaging method was good for some samples while three-dimensional measurement method for others, according to the properties of their base fabric. Various image processing techniques as well as three-dimensional data processing algorithms were applied for the extraction of pills from measured data and a series of shape parameters have been defined for the objective evaluation of fabric pilling. An evaluation criterion that is compatible with the conventional evaluation method has been proposed by applying the new evaluation method to the current photographic standards.

Vision based 2D Human Body Motion Extraction (컴퓨터비젼을 이용한 사람의 2차원 움직임 정보 추출)

  • Lee, S-Hwan;Ahn, Sang-Chul;Kim, Ig-Jae;Kim, Hyoung-Gon;Kim, Jai-Hie
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.179-182
    • /
    • 2000
  • 본 논문은 특별한 마커를 사용하지 않고 연속되는 영상들에서 사람의 2 차원 움직임 정보를 추출하는 알고리즘을 제안한다. 사람의 움직임 정보를 추출하기 위해 색상, 움직임, 그리고 윤곽선 정보를 이용한다. 뿐만 아니라 사용자의 신체적인 차이와 특징점의 일관성을 위해 사람 몸통 모델을 사용한다. 본 논문의 알고리즘은 마커를 사용할 수 없는 HCI 응용분야에 될 수 있다.

  • PDF

The Effects of Electron Beam Exposure Time on Transmission Electron Microscopy Imaging of Negatively Stained Biological Samples

  • Kim, Kyumin;Chung, Jeong Min;Lee, Sangmin;Jung, Hyun Suk
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.150-154
    • /
    • 2015
  • Negative staining electron microscopy facilitates the visualization of small bio-materials such as proteins; thus, many electron microscopists have used this conventional method to visualize the morphologies and structures of biological materials. To achieve sufficient contrast of the materials, a number of imaging parameters must be considered. Here, we examined the effects of one of the fundamental imaging parameters, electron beam exposure time, on electron densities generated using transmission electron microscopy. A single site of a negatively stained biological sample was illuminated with the electron beam for different times (1, 2, or 4 seconds) and sets of micrographs were collected. Computational image processing demonstrated that longer exposure times provide better electron densities at the molecular level. This report describes technical procedures for testing parameters that allow enhanced evaluations of the densities of electron microscopy images.

A Study on Block Processing Approach for Mono-Static Terrain Imaging Radar (모노스태틱 지형 영상 레이더의 블록 처리 기법 연구)

  • Ha, Jong-Soo;Cho, Byung-Lae;Lee, Jung-Soo;Park, Gyu-Churl;Sun, Sun-Gu;Kang, Tae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.549-557
    • /
    • 2013
  • This paper describes a block processing approach to detect targets in front of mono-static terrain imaging radar (TIR). It is difficult to employ several conventional imaging methods of the synthetic aperture radar(SAR) because the TIR is an ultra-wide-band(UWB) type of radar and employs a dechirp-on-receive process. To design an available imaging method, a block processing approach which conducts a range compression and an azimuth compression is proposed in this paper. The complete derivation of the proposed approach is presented. The results of simulations and field tests are demonstrated to show the performance and validity of the proposed approach.

Review of the Application of Wavelet Theory to Image Processing

  • Vyas, Aparna;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.403-417
    • /
    • 2016
  • This paper reviews recent published works dealing with the application of wavelets to image processing based on multiresolution analysis. After revisiting the basics of wavelet transform theory, various applications of wavelets and multiresolution analysis are reviewed, including image denoising, image enhancement, super-resolution, and image compression. In addition, we introduce the concept and theory of quaternion wavelets for the future advancement of wavelet transform and quaternion multiresolution applications.

A Perspective on the Electromagnetic Imaging of Aircrafts (비행체의 전자파 영상화 기술동향)

  • 윤용수;이재천
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.167-175
    • /
    • 1999
  • So far, the remote sensing technology has widely been used in a variety of application areas such as military, medical imaging, environment, geology and so forth. The microwave remote sensing uses the wavelengths ranging from around one centimeter up to a few tens of centimeters and is known to be very effective regardless of the weather conditions and the day/night time as compared with the reflective InfraRed (IR) remote sensing or the thermal IR remote sensing. There are three generic modes of synthetic aperture radar imaging systems depending on its application, that is, stripmap mode, spotlight mode, or inverse mode. In this article we focus on the issue of imaging of flying aircrafts for the inverse mode of a ground - based, fixed radar with moving objects. The imaging of flying aircrafts is considered to be an important step for the automatic target recognition systems, and therefore a great deal of efforts have recently been made on the subject. Here we review the three representative methods including the Fourier transform processing, the time - frequency processing, and the reconstruction from the projection. Some relative merits and drawbacks are also discussed.

Reference Functions for Synthesis and Analysis of Multiview and Integral Images

  • Saveljev, Vladimir;Kim, Sung-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.148-161
    • /
    • 2013
  • We propose one- and two-dimensional reference functions for processing of integral/multiview imaging. The functions provide the synthesis/analysis of the integral image by distance, as an alternative to the composition/decomposition by view images (directions). The synthesized image was observed experimentally. In analysis confirmed by simulation in a qualitative sense, the distance was obtained by convolution of the integral image with the reference functions.

Advances in Optimal Detection of Cancer by Image Processing; Experience with Lung and Breast Cancers

  • Mohammadzadeh, Zeinab;Safdari, Reza;Ghazisaeidi, Marjan;Davoodi, Somayeh;Azadmanjir, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5613-5618
    • /
    • 2015
  • Clinicians should looking for techniques that helps to early diagnosis of cancer, because early cancer detection is critical to increase survival and cost effectiveness of treatment, and as a result decrease mortality rate. Medical images are the most important tools to provide assistance. However, medical images have some limitations for optimal detection of some neoplasias, originating either from the imaging techniques themselves, or from human visual or intellectual capacity. Image processing techniques are allowing earlier detection of abnormalities and treatment monitoring. Because the time is a very important factor in cancer treatment, especially in cancers such as the lung and breast, imaging techniques are used to accelerate diagnosis more than with other cancers. In this paper, we outline experience in use of image processing techniques for lung and breast cancer diagnosis. Looking at the experience gained will help specialists to choose the appropriate technique for optimization of diagnosis through medical imaging.