• 제목/요약/키워드: image-based visual feedback

검색결과 47건 처리시간 0.019초

Augmented System for Immersive 3D Expansion and Interaction

  • Yang, Ungyeon;Kim, Nam-Gyu;Kim, Ki-Hong
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.149-158
    • /
    • 2016
  • In the field of augmented reality technologies, commercial optical see-through-type wearable displays have difficulty providing immersive visual experiences, because users perceive different depths between virtual views on display surfaces and see-through views to the real world. Many cases of augmented reality applications have adopted eyeglasses-type displays (EGDs) for visualizing simple 2D information, or video see-through-type displays for minimizing virtual- and real-scene mismatch errors. In this paper, we introduce an innovative optical see-through-type wearable display hardware, called an EGD. In contrast to common head-mounted displays, which are intended for a wide field of view, our EGD provides more comfortable visual feedback at close range. Users of an EGD device can accurately manipulate close-range virtual objects and expand their view to distant real environments. To verify the feasibility of the EGD technology, subject-based experiments and analysis are performed. The analysis results and EGD-related application examples show that EGD is useful for visually expanding immersive 3D augmented environments consisting of multiple displays.

RGB-D 센서, AR 마커, 색수정 알고리즘을 활용한 매니퓰레이터 투명화 (Transparent Manipulators Accomplished with RGB-D Sensor, AR Marker, and Color Correction Algorithm)

  • 김동엽;김영지;손현식;황정훈
    • 로봇학회논문지
    • /
    • 제15권3호
    • /
    • pp.293-300
    • /
    • 2020
  • The purpose of our sensor system is to transparentize the large hydraulic manipulators of a six-ton dual arm excavator from the operator camera view. Almost 40% of the camera view is blocked by the manipulators. In other words, the operator loses 40% of visual information which might be useful for many manipulator control scenarios such as clearing debris on a disaster site. The proposed method is based on a 3D reconstruction technology. By overlaying the camera image from front top of the cabin with the point cloud data from RGB-D (red, green, blue and depth) cameras placed at the outer side of each manipulator, the manipulator-free camera image can be obtained. Two additional algorithms are proposed to further enhance the productivity of dual arm excavators. First, a color correction algorithm is proposed to cope with the different color distribution of the RGB and RGB-D sensors used on the system. Also, the edge overlay algorithm is proposed. Although the manipulators often limit the operator's view, the visual feedback of the manipulator's configurations or states may be useful to the operator. Thus, the overlay algorithm is proposed to show the edge of the manipulators on the camera image. The experimental results show that the proposed transparentization algorithm helps the operator get information about the environment and objects around the excavator.

Effects of a Posture Correction Feedback System on Upper Body Posture, Muscle Activity, and Fatigue During Computer Typing

  • Subin Kim;Chunghwi Yi;Seohyun Kim;Gyuhyun Han;Onebin Lim
    • 한국전문물리치료학회지
    • /
    • 제30권3호
    • /
    • pp.221-229
    • /
    • 2023
  • Background: In modern society, the use of computers accounts for a large proportion of our daily lives. Although substantial research is being actively conducted on musculoskeletal diseases resulting from computer use, there has been a recent surge in interest in improving the working environment for prevention. Objects: This study aimed to examine the effects of posture correction feedback (PCF) on changes in neck posture and muscle activation during computer typing. Methods: The participants performed a computer typing task in two sessions, each lasting 16 minutes. The participant's dominant side was photographed and analyzed using ImageJ software to verify neck posture. Surface electromyography (EMG) was used to confirm the participant's cervical erector spinae (CES) and upper trapezius muscle activities. The EMG signal was analyzed using the percentage of reference voluntary contraction and amplitude probability distribution function (APDF). In the second session, visual and auditory feedback for posture correction was provided if the neck was flexed by more than 15° in the initial position during computer typing. A 20-minute rest period was provided between the two sessions. Results: The neck angle (p = 0.014), CES muscle activity (p = 0.008), and APDF (p = 0.015) showed significant differences depending on the presence of the PCF. Furthermore, significant differences were observed regarding the CES muscle activity (p = 0.001) and APDF (p = 0.002) over time. Conclusion: Our study showed that the feedback system can correct poor posture and reduces unnecessary muscle activation during computer work. The improved neck posture and reduced CES muscle activity observed in this study suggest that neck pain can be prevented. Based on these results, we suggest that the PCF system can be used to prevent neck pain.

휘도기반 터널내 운전자 적정조명시스템 개발 연구 (Study on Optimized Manual Development and Optimum Lighting System within Luminance-based Tunnel)

  • 이미애;김연화;한승훈;김지헌
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.18-29
    • /
    • 2015
  • The purposes of this research and development are as follows: first, to provide pleasant driving environments inside tunnels; second, to improve the current illumination environments lacking in diffusion luminance meters to meet tunnel lighting standards; and, third, to reduce the consumption of tunnel lighting energy accounting for approximately 65% of tunnel maintenance costs because of inadequate visual environments and tunnel operations. Further details are listed below. Firstly, an image luminance meter for tunnels that can implement the L20-method which is a tunnel luminance method that follows the international standards of CIE88, which was developed in order to improve and change the existing illumination-based tunnel lighting operation system to a luminance-based system. (The margin of error of below 5% according to the results of a test by an authorized agency and field test). Secondly, early illumination control is possible since the lighting control system that can be operated based on luminance enables interlocking control of the inside and outside of a tunnel using ethernet communication. Thirdly, guidelines for field application of the system are proposed. In addition, the luminance inducers of tunnels are found and the reflexibility of each facility that may reduce luminance of the boundaries is also proposed. Fourthly, as a result of a test bed, power consumption of luminance-based lighting operations decreased by 15.6% compared to illumination-based operations. Applying the feedback controls and maintenance factors of internal/external luminance meters, it reduced by 36.4%. Therefore, we became able to provide a luminance-based lighting operation system that complies with tunnel lighting design standards and provides a visual environment for drivers.

증강현실 기반의 최소침습수술용 인터페이스의 개발 (Development of Immersive Augmented Reality interface for Minimally Invasive Surgery)

  • 문진기;박신석;김유진;김진욱
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.58-67
    • /
    • 2008
  • This study developed a novel augmented reality interface for minimally invasive surgery. The augmented reality technique can alleviate the sensory feedback problem inherent to laparoscopic surgery. An augmented reality system merges real laparoscope image and reconstructed 3D patient model based on diagnostic medical image such as CT, MRI data. By using reconstructed 3D patient model, AR interface could express structure of patient body that is invisible outside visual field of laparoscope. Therefore, an augmented reality system improved sight information of limited laparoscope. In our augmented reality system, the laparoscopic view is located at the center of a wide-angle concave screen and reconstructed 3D patient model is displayed outside the laparoscope. By using a joystick, the laparoscopic view and the reconstructed 3D patient model view are changed concurrently. With our augmented reality system, the surgeon can see the peritoneal cavity from a wide angle of view, without having to move the laparoscope. Since the concave screen serves immersive environments, the surgeon can feel as if she is in the patient body. For these reasons, a surgeon can recognize easily depth information about inner parts of patient and position information of surgical instruments without laparoscope motion. It is possible for surgeon to manipulate surgical instruments more exact and fast. Therefore immersive augmented reality interface for minimally invasive surgery will reduce bodily, environmental load of a surgeon and increase efficiency of MIS.

  • PDF

Strawberry Harvesting Robot for Bench-type Cultivation

  • Han, Kil-Su;Kim, Si-Chan;Lee, Young-Bum;Kim, Sang-Chul;Im, Dong-Hyuk;Choi, Hong-Ki;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.65-74
    • /
    • 2012
  • Purpose: An autonomous robot was developed for harvesting strawberries cultivated in bench-type systems. Methods: The harvest robot consisted of four main components: an autonomous vehicle, a manipulator with four degrees of freedom (DOF), an end effector with two DOFs, and a color computer vision system. Strawberry detection was performed based on 3D image and distance information obtained from a stereo CCD color camera and a laser device, respectively. Results: In this work, a Cartesian type manipulator system was designed, including an intermediate revolute axis and a double driven arm-based joint axis, so that it could generate collision-free motions during harvesting. A DC servomotor-driven end-effector, consisting of a gripper and a cutter, was designed for gripping and cutting the strawberry stem without damaging the strawberry itself. Real-time position tracking algorithms were developed to detect, recognize, trace, and approach strawberries under natural light conditions. Conclusion: The developed robot system could harvest a strawberry within 7 seconds without damage.

확장현실 기반의 심폐소생술 교육 시스템의 사용성 평가 (Usability of CPR Training System based on Extended Reality)

  • 이영호;김선경;최종명;박건우;고영혜
    • 사물인터넷융복합논문지
    • /
    • 제8권6호
    • /
    • pp.115-122
    • /
    • 2022
  • 최근 병원 밖 심정지 환자의 생존율 향상을 위한 일반인 대상 심폐소생술 교육의 중요성이 강조되고 있다. 일반인 대상 효과적인 심폐소생술 교육을 위해 보다 정확하고 생동감 있는 교육전략이 필요하다. 이에 본 연구에서는 확장현실 기반의 심폐소생술 교육시스템을 개발하고 일반인을 대상으로 교육한 사용성 평가 결과를 제시한다. 3개의 응용프로그램으로 구성된 확장현실 기반 심폐소생술 교육시스템에서는 첫 번째 마네킹에 정합된 3D 심장 해부도를 스마트글라스에 전송하여 가슴압박 지점을 안내한다. 두 번째 응용프로그램은 스마트글라스를 통해 심폐소생술 과정에 대한 시·청각적 정보를 제공함과 동시에 스마트워치의 진동 알림을 전송하여 심폐소생술의 정확한 압박 속도를 안내한다. 세번째 Add on kit는 마네킹에 설치된 센서를 통하여 흉부 압박의 깊이와 속도에 대한 즉각적인 피드백 정보를 스마트폰으로 전송한다. 본 연구에 참여한 93명의 대상자는 확장현실 기반 심폐소생술 교육시스템이 현장감과 효과성 측면에서 긍정적이라 평가하였다. 확장현실 기술을 이용한 정합기술은 현장감과 몰입도를 높이고 자기 주도적 훈련을 쉽게 함으로서 심폐소생술 교육 운영 효율성 향상에 이바지할 수 있다.