• Title/Summary/Keyword: image verification device

Search Result 45, Processing Time 0.026 seconds

Review on Usefulness of EPID (Electronic Portal Imaging Device) (EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰)

  • Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.

  • PDF

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.

Development of the Mechenical System and Vision Algorithm for the External Appearance Test Using Vision Image Processing (비전 이미지 프로세싱을 이용한 외관검사가 가능한 기계시스템 및 비전 알고리즘 개발)

  • Kim, Young-Choon;Kim, Young-Man;Kim, Sung-Gil;Kim, Hong-Bae;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.202-208
    • /
    • 2016
  • In this study, the defect in connection with a C-tray was inspected using a low-cost camera. The four test items were the device overlapping in the tray, the bending of the tray, the loaded quantity of the tray, and the device pocket leaving, an algorithm was developed for defining and detecting the above defect types. Therefore, the developed handling system could extend the application of the stack of the c-tray and provide a quantity verification inspection on the packing processing. The machine operation control program, which can ensure the optimal inspection image to match the scan speed, was developed and the control program that can process the user gui and the vision image utilizing the control was developed. Overall, a mechanical system that is practicable for obtaining an image and processing the vision data was designed.

Evaluation of Usefulness of Portal Image Using Electronic Portal Imaging Device (EPID) in the Patients Who Received Pelvic Radiation Therapy (골반강 내 방사선 치료 환자에서 Electronic Portal Imaging Device(EPID)를 이용한 Portal Image의 유용성에 관한 연구)

  • Kim Woo Chul;Park Won;Kim Heon Jong;Park Seong Young;Cho Young Kap;Loh John J;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.497-504
    • /
    • 1998
  • Purpose : To evaluate the usefulness of electronic portal imaging device through objective compare of the images acquired using an EPID and a conventional port film Materials and Methods : From Apr. to Oct. 1997, a total of 150 sets of images from 20 patients who received radiation therapy in the pelvis area were evaluated in the Inha University Hospital and Severance Hospital. A dual image recording technique was devised to obtain both electronic portal images and port film images simultaneously with one treatment course. We did not perform double exposure five to ten images were acquired from each patient. All images were acquired from posteroanterior (PA) view except images from two patients. A dose rate of 100-300 Mu/min and a 10-MV X-ray beam were used and 2-10 MUs were required to produce a verification image during treatment. Kodak diagnostic film with metal/film imaging cassette which was located on the top of the EPID detector was used for the port film. The source to detector distance was 140 cm. Eight anatomical landmarks (pelvic brim, sacrum, acetabulum. iliopectineal line, symphysis, ischium, obturator foramen, sacroiliac joint) were assessed. Four radiation oncologist joined to evaluate each image. The individual landmarks in the port film or in the EPID were rated - very clear (1), clear (2), visible (3), not clear (4), not visible (5). Results : Using an video camera based EPID system. there was no difference of image quality between no enhanced EPID images and port film images. However, when we provided some change with window level for the portal image, the visibility of the sacrum and obturator foramen was improved in the portal images than in the port film images. All anatomical landmarks were more visible in the portal images than in the port film when we applied the CLAHE mode enhancement. The images acquired using an matrix ion chamber type EPID were also improved image qualify after window level adjustment. Conclusion : The quality of image acquired using an electronic portal imaging device was comparable to that of the port film. When we used the enhance mode or window level adjustment. the image quality of the EPID was superior to that of the port film. EPID may replace the port film.

  • PDF

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.

Development of Smart driving monitoring device for Personal Mobility through Confusion Matrix verification

  • Han, Ju-Wan;Park, Seong-Hyun;Sim, Chae-Hyeon;Whang, Ju-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • As the delivery industry grew around the restaurant industry along with the COVID-19 situation, the number of delivery workers increased significantly. Along with that, new forms of delivery using personal mobility (PM) also emerged and two-wheeled or PM-related accidents are steadily increasing. This study manufactures a PM's driving analysis device to establish a safe delivery monitoring environment. This system was constructed to process data collected from the driving analysis device and through a cloud server, which would recognize and record special situations (acceleration/deceleration, speed bump) that could occur during the PM's driving situation. As a result, the angular speed, acceleration, and geomagnetic values collected from the IMU in the device were able to determine whether to drive, drive on the sidewalk, and drive on the speed bump. This technology was able to achieve approximately 1600 times more driving information storage efficiency than conventional image-based recording devices.

Development of Respiratory Motion Reduction Device System (RMRDs) for Radiotherapy in Moving Tumor: Construction of RMRDs and Patient Setup Verification Program

  • Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.86-89
    • /
    • 2002
  • The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Satellite monitoring of large-scale air pollution in East Asia

  • Chung, Y.S.;Park, K.H.;Kim, H.S.;Kim, Y.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.786-789
    • /
    • 2003
  • The detection of sandstorms and industrial pollutants has been the emphasis of this study. Data obtained from meteorological satellites, NOAA and GMS, have been used for detailed analysis. MODIS and Landsat images are also used for the application of future KOMPSAT- 2. Verification of satellite observations has been made with air pollution data obtained by ground-level monitors. It was found that satellite measurements agree well with concentrations and variations of air pollutants measured on the ground, and that satellite technique is a very useful device for monitoring large-scale air pollution in East Asia. The quantitative analysis of satellite image data on air pollution is the goal in the future studies.

  • PDF

Wavelet Transform Technology for Translation-invariant Iris Recognition (위치 이동에 무관한 홍채 인식을 위한 웨이블렛 변환 기술)

  • Lim, Cheol-Su
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.459-464
    • /
    • 2003
  • This paper proposes the use of a wavelet based image transform algorithm in human iris recognition method and the effectiveness of this technique will be determined in preprocessing of extracting Iris image from the user´s eye obtained by imaging device such as CCD Camera or due to torsional rotation of the eye, and it also resolves the problem caused by invariant under translations and dilations due to tilt of the head. This technique values through the proposed translation-invariant wavelet transform algorithm rather than the conventional wavelet transform method. Therefore we extracted the best-matching iris feature values and compared the stored feature codes with the incoming data to identify the user. As result of our experimentation, this technique demonstrate the significant advantage over verification when it compares with other general types of wavelet algorithm in the measure of FAR & FRR.

Experimental Verification on the Effect of the Gap Flow Blocking Devices Attached on the Semi-Spade Rudder using Flow Visualization Technique (유동가시화를 이용한 혼-타의 간극유동 차단장치 효과에 관한 실험적 검증)

  • Shin, Kwangho;Suh, Jung-Chun;Kim, Hyochul;Ryu, Keuksang;Oh, Jungkeun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.324-333
    • /
    • 2013
  • Recently, rudder erosion due to cavitation has been frequently reported on a semi-spade rudder of a high-speed large ship. This problem raises economic and safety issues when operating ships. The semi-spade rudders have a gap between the horn/pintle and the movable wing part. Due to this gap, a discontinuous surface, cavitation phenomenon arises and results in unresolved problems such as rudder erosion. In this study, we made a rudder model for 2-D experiments using the NACA0020 and also manufactured gap flow blocking devices to insert to the gap of the model. In order to study the gap flow characteristics at various rudder deflection angles($5^{\circ}$, $10^{\circ}$, $35^{\circ}$) and the effect of the gap flow blocking devices, we carried out the velocity measurements using PIV(Particle Image Velocimetry) techniques and cavitation observation using high speed camera in Seoul National University cavitation tunnel. To observe the gap cavitation on a semi-spade rudder, we slowly lowered the inside pressure of the cavitation tunnel until cavitation occurred near the gap and then captured it using high-speed camera with the frame rate of 4300 fps(frame per second). During this procedure, cavitation numbers and the generated location were recorded, and these experimental data were compared with CFD results calculated by commercial code, Fluent. When we use gap flow blocking device to block the gap, it showed a different flow character compared with previous observation without the device. With the device blocking the gap, the flow velocity increases on the suction side, while it decreases on the pressure side. Therefore, we can conclude that the gap flow blocking device results in a high lift-force effect. And we can also observe that the cavitation inception is delayed.