• Title/Summary/Keyword: image synthesis

Search Result 444, Processing Time 0.025 seconds

Disparity Refinement near the Object Boundaries for Virtual-View Quality Enhancement

  • Lee, Gyu-cheol;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2189-2196
    • /
    • 2015
  • Stereo matching algorithm is usually used to obtain a disparity map from a pair of images. However, the disparity map obtained by using stereo matching contains lots of noise and error regions. In this paper, we propose a virtual-view synthesis algorithm using disparity refinement in order to improve the quality of the synthesized image. First, the error region is detected by examining the consistency of the disparity maps. Then, motion information is acquired by applying optical flow to texture component of the image in order to improve the performance. Then, the occlusion region is found using optical flow on the texture component of the image in order to improve the performance of the optical flow. The refined disparity map is finally used for the synthesis of the virtual view image. The experimental results show that the proposed algorithm improves the quality of the generated virtual-view.

Real-time Multiple Stereo Image Synthesis using Depth Information (깊이 정보를 이용한 실시간 다시점 스테레오 영상 합성)

  • Jang Se hoon;Han Chung shin;Bae Jin woo;Yoo Ji sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.239-246
    • /
    • 2005
  • In this paper. we generate a virtual right image corresponding to the input left image by using given RGB texture data and 8 bit gray scale depth data. We first transform the depth data to disparity data and then produce the virtual right image with this disparity. We also proposed a stereo image synthesis algorithm which is adaptable to a viewer's position and an real-time processing algorithm with a fast LUT(look up table) method. Finally, we could synthesize a total of eleven stereo images with different view points for SD quality of a texture image with 8 bit depth information in a real time.

Text Augmentation Using Hierarchy-based Word Replacement

  • Kim, Museong;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • Recently, multi-modal deep learning techniques that combine heterogeneous data for deep learning analysis have been utilized a lot. In particular, studies on the synthesis of Text to Image that automatically generate images from text are being actively conducted. Deep learning for image synthesis requires a vast amount of data consisting of pairs of images and text describing the image. Therefore, various data augmentation techniques have been devised to generate a large amount of data from small data. A number of text augmentation techniques based on synonym replacement have been proposed so far. However, these techniques have a common limitation in that there is a possibility of generating a incorrect text from the content of an image when replacing the synonym for a noun word. In this study, we propose a text augmentation method to replace words using word hierarchy information for noun words. Additionally, we performed experiments using MSCOCO data in order to evaluate the performance of the proposed methodology.

A Comparison of Pan-sharpening Algorithms for GK-2A Satellite Imagery (천리안위성 2A호 위성영상을 위한 영상융합기법의 비교평가)

  • Lee, Soobong;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.275-292
    • /
    • 2022
  • In order to detect climate changes using satellite imagery, the GCOS (Global Climate Observing System) defines requirements such as spatio-temporal resolution, stability by the time change, and uncertainty. Due to limitation of GK-2A sensor performance, the level-2 products can not satisfy the requirement, especially for spatial resolution. In this paper, we found the optimal pan-sharpening algorithm for GK-2A products. The six pan-sharpening methods included in CS (Component Substitution), MRA (Multi-Resolution Analysis), VO (Variational Optimization), and DL (Deep Learning) were used. In the case of DL, the synthesis property based method was used to generate training dataset. The process of synthesis property is that pan-sharpening model is applied with Pan (Panchromatic) and MS (Multispectral) images with reduced spatial resolution, and fused image is compared with the original MS image. In the synthesis property based method, fused image with desire level for user can be produced only when the geometric characteristics between the PAN with reduced spatial resolution and MS image are similar. However, since the dissimilarity exists, RD (Random Down-sampling) was additionally used as a way to minimize it. Among the pan-sharpening methods, PSGAN was applied with RD (PSGAN_RD). The fused images are qualitatively and quantitatively validated with consistency property and the synthesis property. As validation result, the GSA algorithm performs well in the evaluation index representing spatial characteristics. In the case of spectral characteristics, the PSGAN_RD has the best accuracy with the original MS image. Therefore, in consideration of spatial and spectral characteristics of fused image, we found that PSGAN_RD is suitable for GK-2A products.

View Synthesis and Coding of Multi-view Data in Arbitrary Camera Arrangements Using Multiple Layered Depth Images

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a new view synthesis technique for coding of multi-view color and depth data in arbitrary camera arrangements. We treat each camera position as a 3-D point in world coordinates and build clusters of those vertices. Color and depth data within a cluster are gathered into one camera position using a hierarchical representation based on the concept of layered depth image (LDI). Since one camera can cover only a limited viewing range, we set multiple reference cameras so that multiple LDIs are generated to cover the whole viewing range. Therefore, we can enhance the visual quality of the reconstructed views from multiple LDIs comparing with that from a single LDI. From experimental results, the proposed scheme shows better coding performance under arbitrary camera configurations in terms of PSNR and subjective visual quality.

  • PDF

Interaction art using Video Synthesis Technology

  • Kim, Sung-Soo;Eom, Hyun-Young;Lim, Chan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • Media art, which is a combination of media technology and art, is making a lot of progress in combination with AI, IoT and VR. This paper aims to meet people's needs by creating a video that simulates the dance moves of an object that users admire by using media art that features interactive interactions between users and works. The project proposed a universal image synthesis system that minimizes equipment constraints by utilizing a deep running-based Skeleton estimation system and one of the deep-running neural network structures, rather than a Kinect-based Skeleton image. The results of the experiment showed that the images implemented through the deep learning system were successful in generating the same results as the user did when they actually danced through inference and synthesis of motion that they did not actually behave.

Image Restoration and Object Removal Using Prioritized Adaptive Patch-Based Inpainting in a Wavelet Domain

  • Borole, Rajesh P.;Bonde, Sanjiv V.
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1183-1202
    • /
    • 2017
  • Image restoration has been carried out by texture synthesis mostly for large regions and inpainting algorithms for small cracks in images. In this paper, we propose a new approach that allows for the simultaneous fill-in of different structures and textures by processing in a wavelet domain. A combination of structure inpainting and patch-based texture synthesis is carried out, which is known as patch-based inpainting, for filling and updating the target region. The wavelet transform is used for its very good multiresolution capabilities. The proposed algorithm uses the wavelet domain subbands to resolve the structure and texture components in smooth approximation and high frequency structural details. The subbands are processed separately by the prioritized patch-based inpainting with isophote energy driven texture synthesis at the core. The algorithm automatically estimates the wavelet coefficients of the target regions of various subbands using optimized patches from the surrounding DWT coefficients. The suggested performance improvement drastically improves execution speed over the existing algorithm. The proposed patch optimization strategy improves the quality of the fill. The fill-in is done with higher priority to structures and isophotes arriving at target boundaries. The effectiveness of the algorithm is demonstrated with natural and textured images with varying textural complexions.

View synthesis with sparse light field for 6DoF immersive video

  • Kwak, Sangwoon;Yun, Joungil;Jeong, Jun-Young;Kim, Youngwook;Ihm, Insung;Cheong, Won-Sik;Seo, Jeongil
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.24-37
    • /
    • 2022
  • Virtual view synthesis, which generates novel views similar to the characteristics of actually acquired images, is an essential technical component for delivering an immersive video with realistic binocular disparity and smooth motion parallax. This is typically achieved in sequence by warping the given images to the designated viewing position, blending warped images, and filling the remaining holes. When considering 6DoF use cases with huge motion, the warping method in patch unit is more preferable than other conventional methods running in pixel unit. Regarding the prior case, the quality of synthesized image is highly relevant to the means of blending. Based on such aspect, we proposed a novel blending architecture that exploits the similarity of the directions of rays and the distribution of depth values. By further employing the proposed method, results showed that more enhanced view was synthesized compared with the well-designed synthesizers used within moving picture expert group (MPEG-I). Moreover, we explained the GPU-based implementation synthesizing and rendering views in the level of real time by considering the applicability for immersive video service.

An Intermediate Image Generation Method using Multiresolution-based Hierarchical Disparity Map (다해상도 기반 계층적 변이맵을 이용한 중간영상 생성 방법)

  • 허경무;유재민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.899-905
    • /
    • 2003
  • An intermediate images generation method using multi-resolution based hierarchical block matching disparity map is proposed. This method is composed of a disparity estimation, an occlusion detection and intermediate image synthesis. For the disparity estimation, which is one of the important processes in intermediate image synthesis, we use the multi-resolution based hierarchical block matching algorithm to overcome the imperfect ness of block matching algorithm. The proposed method makes disparity maps more accurate and dense by multi-resolution based hierarchical block matching, and the estimated disparity maps are used to generate intermediate images of stereo images. Generated intermediate images show 0.1∼1.4 ㏈ higher PSNR than the images obtained by block matching algorithm.

Design and Performance Improvement of a Digital Tomosynthesis System for Object-Detector Synchronous Rotation (물체-검출기 동기회전 방식의 X-선 단층영상시스템 설계 및 성능개선에 관한 연구)

  • Kang, Sung-Taek;Cho, Hyung-Suck;Roh, Byung-Ok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.471-480
    • /
    • 1999
  • This paper presents design and performance improvement of a new digital tomosynthesis (DTS) system for object-detector synchronous rotation. Firstly, a new DTS system, called OSDR (Object-Detector Synchronous Rotation) is suggested and designed to acquire X-ray digital images. Secondly, the shape distortion of DTS images generated by an image intensifier is modeled. And a new synthesis algorithm, which overcomes the limitations of the existing synthesis algorithm, is suggested to improve the sharpness of the synthesized image. Also an artifact analysis of the DTS system is performed. Thirdly, some performance indices, which evaluate quantitatively performance improvement, are defined. And the experimental verification of the performance improvement is accomplished by the ODSR system newly designed. The advantages of the ODSR system are expressed quantitatively, compared with an existing system.

  • PDF