A refined version of automatic micro-organism recognition and identification method, 'O.I.S.M.2' is proposed in this paper, using image processing based on an expert system. This proposed method is based on the segmentation of the organism image, characterizing segment features, which are independent of individual size and length. Complicated shapes of organisms are divided into basic shape segments defined in this paper such as lines, circles, ovals etc. Organisms can then be expressed simply in a set of segments, regardless their individual differences.
The Journal of Korean Institute of Communications and Information Sciences
/
v.22
no.8
/
pp.1715-1721
/
1997
Wavelet transform is not applicable to arbitrarily-shaped region (or object) in images, due to the nature of its global decomposition. In this paper, the arbitrarily-shaped wavelet transform(ASWT) is proposed in order to solve this problem and its properties are investigated. Computation complexity of the ASWT is also examined and it is shown that the ASWT requires significantly fewer computations than conventional wavelet transform, since the ASWT processes only the object region in the original image. Experimental resutls show that any arbitrarily-shaped image segment can be decomposed using the ASWT and perfectly reconstructed using the inverse ASWT.
KIPS Transactions on Software and Data Engineering
/
v.10
no.4
/
pp.125-132
/
2021
As the layers of artificial neural network deepens, and the dimension of data used as an input increases, there is a problem of high arithmetic operation requiring a lot of arithmetic operation at a high speed in the learning and recognition of the neural network (NN). Thus, this study proposes a data dimensionality reduction method to reduce the dimension of the input data in the NN. The proposed Line-segment Feature Analysis (LFA) algorithm applies a gradient-based edge detection algorithm using median filters to analyze the line-segment features of the objects existing in an image. Concerning the extracted edge image, the eigenvalues corresponding to eight kinds of line-segment are calculated, using 3×3 or 5×5-sized detection filters consisting of the coefficient values, including [0, 1, 2, 4, 8, 16, 32, 64, and 128]. Two one-dimensional 256-sized data are produced, accumulating the same response values from the eigenvalue calculated with each detection filter, and the two data elements are added up. Two LFA256 data are merged to produce 512-sized LAF512 data. For the performance evaluation of the proposed LFA algorithm to reduce the data dimension for the recognition of handwritten numbers, as a result of a comparative experiment, using the PCA technique and AlexNet model, LFA256 and LFA512 showed a recognition performance respectively of 98.7% and 99%.
An algorithm for detecting a line segment in an image is presented using incremental pixel extension. We use a different approach from conventional algorithms, such as the Hough transform approach and the line segment grouping approach. The Canny edge is calculated and an arbitrary point is selected among the edge elements. After the arbitrary point is selected, a base line approximating the line segment is calculated and edge pixels within an arbitrary radius are selected. A weighted value is assigned to each edge pixel, which is selected by using the error of the distance and the direction between the pixel and the base line. A line segment is extracted by Jilting a line using the weighted least square method after determining whether selected pixels are linked or delinked using the sum comparison of the weights. The proposed algorithm is compared with two other methods and results show that our algorithm is faster and can detect the real line segment.
In this paper, we present an algorithm that quickly and effectively estimates orthogonal vanishing points in equirectangular images of urban environment. Our algorithm is based on the RANSAC (RANdom SAmple Consensus) algorithm and on the characteristics of the line segment in the spherical panorama image of the $360^{\circ}$ longitude and $180^{\circ}$ latitude field of view. These characteristics can be used to reduce the geometric ambiguity in the line segment classification as well as to improve the robustness of vanishing point estimation. The proposed algorithm is validated experimentally on a wide set of images. The results show that our algorithm provides excellent levels of accuracy for the vanishing point estimation as well as line segment classification.
In the work presented here, we describe a method to extract TrueType features for supporting letter recognition. Even if variously existing document processing techniques have been challenged, almost few methods are capable of recognize a letter associated with its TrueType features supporting OCR free, which boost up fast processing time for image text retrieval. By reviewing the mechanism generating digital fonts and birth of TrueType, we realize that each TrueType is drawn by its contour of the glyph table. Hence, we are capable of deriving the segment with density for a letter with a specific TrueType, defined by the number of occurrence over a segment width. A certain number of occurrence appears frequently often due to the fixed segment width. We utilize letter recognition by comparing TrueType feature library of a letter with that from input word images. Experiments have been carried out to justify robustness of the proposed method showing acceptable results.
Recently, the hospitals in Korea has positively changed one way or another. Therefore hospital managers must focus on the nurses' role in terms of consumers' perception of overall image of hospitals and the degree of satisfaction of the consumers. To achieve the purposes, the questionnaire was developed and distributed to 280 people who had a direct experience with nursing services subjected hospitals in Seoul at the time of screening. Among them, 229 responses were turned out to be useful and used for final analysis. The measurement instrument for hospital nursing service quality evaluation was modified from the SERVQUAL model originated from Parasuraman, Zeithaml, and Berry (1988). For data analysis, SPSS/PC and PC-MDS program were used. The results were as follows : 1) The perception map showed that the seven subjected hospitals were divided into three groups. It could be interpreted that the hospitals in the same group had a strong competitive relationships. Because the nursing services' scores of hospitals C and E were higher than those of other hospitals, they could be served as a benchmark for the other hospitals. 2) The marketing place of hospital nursing services was divided by four. Since service generally had a strong point in nearby service market segment. Aiming an nearby hospital nursing services market segment by the hospital nursing services department was regarded as a good repositioning strategy. 3) When consumers evaluated the quality of hospital nursing services, they were greatly affected by the hospitals' overall image or other characteristics. Therefore, for improving hospital's nursing services, hospital nursing services department requires a great deal of labor to improve hospitals' overall image or other characteristics.
The nature of complexity of medical images makes them difficult to segment using standard techniques. Therefore the usual approaches to segment images continue to predominantly involve manual interaction. But it tediously consumes a good deal of time and efforts of the experts. Hereby a nonmanual parameters estimation which can replace the manual interaction is needed to solve the problem of redundant manual works for an image segmentation. This paper attempts to estimate parameters for an image region segmentation using Scale Space Filtering. This attempt results in estimating the number of regions, their boundary and each representatives to be segmented 2-dimensionally and 3-dimensionally. Using this algorithm, we may diminish the problem of wasted time and efforts for finding prerequisite segmentation parameters, and lead the relatively reasonable result of region segmentation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.9-12
/
2015
In this paper, we propose a new feature matching algorithm by modifying and combining the FAST(Features from Accelerated Segment Test) feature detector and SURF feature descriptor which is robust to the distortion of the given image. Scale space is generated to consider the variation of the scale and determine the candidate of features in the image robust to the noise. The original FAST algorithm results in many feature points along edges. To solve this problem, we apply the principal curvatures for refining it. We also use SURF descriptor to make it robust against the variations in the image by rotation. Through the experiments, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load. Especially, it shows a strength for noisy images.
The purposes of this study were to segment the men in twenties and thirties according to clothing benefits sought, and to develop a profile of each segment concerning shopping orientation, self·image, and importance of store attributes. The questionnaire was administered to men in twenties and thirties living in Seoul and data were analyzed by frequency, percentage, factor analysis, cluster analysis, and MANOVA(multivarite analysis of variance). By cluster analysis of clothing benefits sought, three groups were identified and labeled as: (1) the group of focusing the influence of other people and comfort clothing(31.7%): (2) the group of pursuing the fashion trend (48.1%); the group of pursuing the individuality(20.1%). Three groups were then compared through MANOVA on shopping orientation, importance of store attributes, and self-image. Significant differences were found among three groups on three variables. In general, the group of focusing the influence of other people and comfort clothing tended to be ostentatious and tended to wear comfortable clothing. The group of pursuing the fashion trend didn't show specific shopping orientation and just liked to follow the current fashion trend. The group of pursuing the individuality enjoyed the shopping and liked to buy the clothing which enhances the personal character.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.