Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
Journal of the Korea Society of Computer and Information
/
v.21
no.12
/
pp.11-18
/
2016
Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.
Journal of the Institute of Convergence Signal Processing
/
v.12
no.1
/
pp.33-37
/
2011
This paper presents the frequency spectral analysis based on FFT of the infrared ray fire thermal image, it is an object to deduce the conditions for determining fire alarm through the image processing with the frequency domain. After the candidate regions are separated by using pre-defined brightness value, the fast fourier transform is performed for consecutive infrared thermal images, the frequency spectral analysis of the thermal image analyzed DC and AC frequency distribution. The fire criterion of the thermal image was presented based on the analyzed result and a practicality was confirmed through the computer simulation.
KARI is developing Image Data Acquisition and Control System (IDACS) for pre-processing meteorological and ocean data acquired on geostationary orbit. This paper describes the functions and architecture of IDACS and gives its operation policy including backup operation to overcome limitation of single-configured antenna system. The COMS IDACS provides the capability to receive the raw sensor data and disseminate processed MI data to users via a satellite. From the processed image data, users can produce a set of meteorological and ocean products for a wide range of applications. Most of IDACS subsystems are being developed by Korean technologies and experience acquired from previous projects. In case of COMS geometric correction software module, as it is closely dependent on the characteristics of imagers and spacecraft bus system, it is being co-developed with overseas prime contractor who develops spacecraft bus system.
International Journal of Computer Science & Network Security
/
v.23
no.1
/
pp.125-139
/
2023
Facial expression recognition, a topical problem in the field of computer vision and pattern recognition, is a direct means of recognizing human emotions and behaviors. This paper first summarizes the datasets commonly used for expression recognition and their associated characteristics and presents traditional machine learning algorithms and their benefits and drawbacks from three key techniques of face expression; image pre-processing, feature extraction, and expression classification. Deep learning-oriented expression recognition methods and various algorithmic framework performances are also analyzed and compared. Finally, the current barriers to facial expression recognition and potential developments are highlighted.
It is very important part of pre-processing for get better results by image processing that get emphasized image by processing of source image. Emphasized image is not only good looking image but clear and sharp image. Emphasized images are used very useful data at contour extraction and image recognition in image processing. It have different image recognition by how much represent a origin scene in row quality image. Present algorithms that get emphasized premier image do not get clear picture of degree that want in various kind of images and there is shortcoming that need much process times being proportional size of picture quality or accumulation degree of histogram. In this paper, we propose method to change distribution chart that pixels occupy in histogram as subsequentness in reflex of various kinds as well as that picture quality reflex method to emphasize so that is suitable in practical use purpose originally of premier. Proposed algorithm re-allot histogram distribution by reverse tracking histogram. Experimental images are same result and take less processing time than histogram equalization.
In this paper, we propose a new method of background removing for digital self-adaptive acquisition in medical X-ray imaging. We analysis the construction of video digital acquisition system and main factors of acquired image quality, propose a more efficiency method to against background non-uniformly. With proposed method, non-uniform illumination back ground was well removed without image quality degradation.
Underwater photographing and image recording are essential for pre-excavation survey and during excavation in underwater archaeology. Unlike photographing on land, all underwater images suffer various quality degradations such as shape distortions, color shift, blur, low contrast, high noise levels and so on. Outcome is very often heavily photographing equipment and photographer dependent. Excavation schedule, weather conditions, and water conditions can put burdens on divers. Usable images are very limited compared to the efforts. In underwater archaeological study in very turbid water such as in the Yellow Sea (between mainland China and the Korean peninsula), underwater photographing is very challenging. In this study, off-site image distortion and color compensation techniques using an image processing/analysis software is investigated as an alternative image quality enhancement method. As sample images, photographs taken during the excavation of 800-year-old Taean Mado Shipwrecks in the Yellow Sea in 2008-2010 were mainly used. Significant enhancement in distortion and color compensation of archived images were obtained by simple post image processing using image processing/analysis software (PicMan) customized for given view ports, lenses and cameras with and without optical axis offsets. Post image processing is found to be very effective in distortion and color compensation of both recent and archived images from various photographing equipment models and configurations. Merits and demerit of in-situ, distortion and color compensated photographing with sophisticated equipment and conventional photographing equipment, which requires post image processing, are compared.
Alshomrani, Shroog;Aljoudi, Lina;Aljabri, Banan;Al-Shareef, Sarah
International Journal of Computer Science & Network Security
/
v.21
no.7
/
pp.182-190
/
2021
Deep learning is an advanced technology for large-scale data analysis, with numerous promising cases like image processing, object detection and significantly more. It becomes customarily to use transfer learning and fine-tune a pre-trained CNN model for most image recognition tasks. Having people taking photos and tag themselves provides a valuable resource of in-data. However, these tags and labels might be noisy as people who annotate these images might not be experts. This paper aims to explore the impact of noisy labels on fine-tuning pre-trained CNN models. Such effect is measured on a food recognition task using Food101 as a benchmark. Four pre-trained CNN models are included in this study: InceptionV3, VGG19, MobileNetV2 and DenseNet121. Symmetric label noise will be added with different ratios. In all cases, models based on DenseNet121 outperformed the other models. When noisy labels were introduced to the data, the performance of all models degraded almost linearly with the amount of added noise.
Recently the development of medical modality like as MRI, 3D US, DR etc is very active. Therefore it is more required not only the enhancement of quality in medical service but the improvement of medical system based on quantization, minimization, and optimization of high speed. Especially, as the changing into the digital modality system, it gets to start using ASIC(Application Specific Integrated Circuit) to realize one board system. It requires the implementation of hardware debugging and effective speedy algorithm with more speed and accuracy in order to support and replace existing device. If objected image could be linked to high speed process board with special interface and pre-processed using FPGA, it can be used in real time image processing and protocol of HIS(Hospital Information System). This study can support the basic circuit design of medical image board which is able to realize image processing basically using digitalized medical image, and to interface between existing device and image board containing image processing algorithm.
Recently, Vision system has being used all around industry. Sensor systems are used for Mark Reader, for example, optical scanning is proximity sensor system, have many disadvantages, such as, lacking user interface and difficulty to store original specimens. In contrast with this, Vision systems for Mark Reader has many advantages, including function conversion to achieve other work, high accuracy, high speed, etc. In this thesis, we have researched the development of Mark Reader by using a Vision system. The processing course of this s)'stem is consist to Image Pre-Processing such as noise reduction, edge detection, threshold processing. And then, we have carried out camera calibration to calibrate images which are acquired from camera. After searching for reference point within scanning area(60pixe1${\times}$30pixe1), we have calculated points crossing by using line equations. And then, we decide to each ROI(region of interest) which are expressed by four points. Next we have converted absolute coordinate into relative coordinate for analysis a translation component. Finally we carry out Mark Reading with images classified by six patterns. As a result of experiment which follows the algorithm has proposed, we have get error within 0.5% from total image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.