• Title/Summary/Keyword: image pattern recognition

Search Result 615, Processing Time 0.029 seconds

Affine-Invariant Image normalization for Log-Polar Images using Momentums

  • Son, Young-Ho;You, Bum-Jae;Oh, Sang-Rok;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1140-1145
    • /
    • 2003
  • Image normalization is one of the important areas in pattern recognition. Also, log-polar images are useful in the sense that their image data size is reduced dramatically comparing with conventional images and it is possible to develop faster pattern recognition algorithms. Especially, the log-polar image is very similar with the structure of human eyes. However, there are almost no researches on pattern recognition using the log-polar images while a number of researches on visual tracking have been executed. We propose an image normalization technique of log-polar images using momentums applicable for affine-invariant pattern recognition. We handle basic distortions of an image including translation, rotation, scaling, and skew of a log-polar image. The algorithm is experimented in a PC-based real-time vision system successfully.

  • PDF

Development and Characterization of Pattern Recognition Algorithm for Defects in Semiconductor Packages

  • Kim, Jae-Yeol;Yoon, Sung-Un;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, the classification of artificial defects in semiconductor packages is studied by using pattern recognition technology. For this purpose, the pattern recognition algorithm includes the user made MATLAB code. And preprocess is made of the image process and self-organizing map, which is the input of the back-propagation neural network and the dimensionality reduction method, The image process steps are data acquisition, equalization, binary and edge detection. Image process and self-organizing map are compared to the preprocess method. Also the pattern recognition technology is applied to classify two kinds of defects in semiconductor packages: cracks and delaminations.

The Pattern Recognition System Using the Fractal Dimension of Chaos Theory

  • Shon, Young-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • In this paper, we propose a method that extracts features from character patterns using the fractal dimension of chaos theory. The input character pattern image is converted into time-series data. Then, using the modified Henon system suggested in this paper, it determines the last features of the character pattern image after calculating the box-counting dimension, natural measure, information bit, and information (fractal) dimension. Finally, character pattern recognition is performed by statistically finding each information bit that shows the minimum difference compared with a normalized character pattern database.

A Pattern Recognition Based on Co-occurrence among Median Local Binary Patterns (중간값 국소이진패턴 사이의 동시발생 빈도 기반 패턴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.316-320
    • /
    • 2016
  • In this paper, we presents a pattern recognition by considering the spatial co-occurrence among micro-patterns of texture images. The micro-patterns of texture image have been extracted by local binary pattern based on median(MLBP) of block image, and the recognition process is based on co-occurrence among MLBPs. The MLBP is applied not only to consider the local character but also analyze the pattern in order to be robust noise, and spatial co-occurrence is also applied to improve the recognition performance by considering the global space of image. The proposed method has been applied to recognized 17 RGB images of 120*120 pixels from Mayang texture image based on Euclidean distance. The experimental results show that the proposed method has a texture recognition performance.

Performance Analysis of Face Image Recognition System Using A R T Model and Multi-layer perceptron (ART와 다층 퍼셉트론을 이용한 얼굴인식 시스템의 성능분석)

  • 김영일;안민옥
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.69-77
    • /
    • 1993
  • Automatic image recognition system is essential for a better man-to machine interaction. Because of the noise and deformation due to the sensor operation, it is not simple to build an image recognition system even for the fixed images. In this paper neural network which has been reported to be adequate for pattern recognition task is applied to the fixed and variational(rotation, size, position variation for the fixed image)recognition with a hope that the problems of conventional pattern recognition techniques are overcome. At fixed image recognition system. ART model is trained with face images obtained by camera. When recognizing an matching score. In the test when wigilance level 0.6 - 0.8 the system has achievel 100% correct face recognition rate. In the variational image recognition system, 65 invariant moment features sets are taken from thirteen persons. 39 data are taken to train multi-layer perceptron and other 26 data used for testing. The result shows 92.5% recognition rate.

  • PDF

Mobile Palmprint Segmentation Based on Improved Active Shape Model

  • Gao, Fumeng;Cao, Kuishun;Leng, Lu;Yuan, Yue
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.221-228
    • /
    • 2018
  • Skin-color information is not sufficient for palmprint segmentation in complex scenes, including mobile environments. Traditional active shape model (ASM) combines gray information and shape information, but its performance is not good in complex scenes. An improved ASM method is developed for palmprint segmentation, in which Perux method normalizes the shape of the palm. Then the shape model of the palm is calculated with principal component analysis. Finally, the color likelihood degree is used to replace the gray information for target fitting. The improved ASM method reduces the complexity, while improves the accuracy and robustness.

Development of Computer Vision System for Individual Recognition and Feature Information of Cow (I) - Individual recognition using the speckle pattern of cow - (젖소의 개체인식 및 형상 정보화를 위한 컴퓨터 시각 시스템 개발 (I) - 반문에 의한 개체인식 -)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.151-160
    • /
    • 2002
  • Cow image processing technique would be useful not only for recognizing an individual but also for establishing the image database and analyzing the shape of cows. A cow (Holstein) has usually the unique speckle pattern. In this study, the individual recognition of cow was carried out using the speckle pattern and the content-based image retrieval technique. Sixty cow images of 16 heads were captured under outdoor illumination, which were complicated images due to shadow, obstacles and walking posture of cow. Sixteen images were selected as the reference image for each cow and 44 query images were used for evaluating the efficiency of individual recognition by matching to each reference image. Run-lengths and positions of runs across speckle area were calculated from 40 horizontal line profiles for ROI (region of interest) in a cow body image after 3 passes of 5$\times$5 median filtering. A similarity measure for recognizing cow individuals was calculated using Euclidean distance of normalized G-frame histogram (GH). normalized speckle run-length (BRL), normalized x and y positions (BRX, BRY) of speckle runs. This study evaluated the efficiency of individual recognition of cow using Recall(Success rate) and AVRR(Average rank of relevant images). Success rate of individual recognition was 100% when GH, BRL, BRX and BRY were used as image query indices. It was concluded that the histogram as global property and the information of speckle runs as local properties were good image features for individual recognition and the developed system of individual recognition was reliable.

Color Pattern Recognition with Recombined Single Input Channel Joint Transform Correlator

  • Jeong, Man-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • Joint transform correlator (JTC) is a well known tool for color pattern recognition for a color image. Color images have red, green and blue components, thus in conventional JTC, three input channels of these color components are necessary for color pattern recognition. This paper proposes a new technique of color pattern recognition by decomposing the color image into three color components and recombining those components into a single gray image in the input plane. This new technique needs single input channel and single output CCD camera, thus a simple JTC can be used. We present various kinds of simulated results to show that our newly proposed technique can accurately recognize and discriminate color differences.

Numerical Reconstruction and Pattern Recognition using Integral Imaging

  • Yeom, Seo-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1131-1134
    • /
    • 2008
  • In this invited paper, numerical reconstruction and pattern recognition using integral imaging are overviewed. The computational integral imaging method reconstructs three-dimensional information at arbitrary depth-levels. Photon-counting nonlinear matched filtering combined with the computational reconstruction provides promising results for the application of low-light level recognition.

  • PDF

Spatio-temporal Semantic Features for Human Action Recognition

  • Liu, Jia;Wang, Xiaonian;Li, Tianyu;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2632-2649
    • /
    • 2012
  • Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic " and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.