• Title/Summary/Keyword: image information

Search Result 19,710, Processing Time 0.04 seconds

Determination of Road Image Quality Using Fuzzy-Neural Network (퍼지신경망을 이용한 도로 영상의 양불량 판정)

  • 이운근;백광렬;이준웅
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • The confidence of information from image processing depends on the original image quality. Enhancing the confidence by an algorithm has an essential limitation. Especially, road images are exposed to lots of noisy sources, which makes image processing difficult. We, in this paper, propose a FNN (fuzzy-neural network) capable oi deciding the quality of a road image prior to extracting lane-related information. According to the decision by the FNN, road images are classified into good or bad to extract lane-related information. A CDF (cumulative distribution function), a function of edge histogram, is utilized to construct input parameters of the FNN, it is based on the fact that the shape of the CDF and the image quality has large correlation. Input pattern vector to the FNN consists of ten parameters in which nine parameters are from the CDF and the other one is from intensity distribution of raw image. Correlation analysis shows that each parameter represents the image quality well. According to the experimental results, the proposed FNN system was quite successful. We carried out simulations with real images taken by various lighting and weather conditions and achieved about 99% successful decision-making.

Production of Digital Image Map using Aerial Photo and Geospatial Information System (항공사진과 지형공간정보체계를 이용한 수치영상지도 제작연구)

  • Sohn, Duk-Jae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.207-220
    • /
    • 1997
  • This study aims to develope the production method of digital image map of high capable utiliy and terrain interpretability using aerial photo and Geospatial Information System. Theory and efficient practical method was studied to generate tile digital image map with low-cost personal computer system using the merging procedure of raster scanned aerial photo and vector topographic map. Determination theory of ground coordinates, digital image processing, production of digital elevation model was reviewed. And some chariteristics of digital image map, image collection method and significant concepts of digital image processing was studied. Also input and output way of image data to generate the digital image nap, production method of orthophoto map using aerial photo through digital differential rectification was studied. As the result, digital image map was produced and analyzed through the above mentioned procedures.

  • PDF

Image Authentication Using Only Partial Phase Information from a Double-Random-Phase-Encrypted Image in the Fresnel Domain

  • Zheng, Jiecai;Li, Xueqing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2015
  • The double-random phase encryption (DRPE) algorithm is a robust technique for image encryption, due to its high speed and encoding a primary image to stationary white noise. Recently it was reported that DRPE in the Fresnel domain can achieve a better avalanche effect than that in Fourier domain, which means DRPE in the Fresnel domain is much safer, to some extent. Consequently, a method based on DRPE in the Fresnel domain would be a good choice. In this paper we present an image-authentication method which uses only partial phase information from a double-random-phase-encrypted image in the Fresnel domain. In this method, only part of the phase information of an image encrypted with DRPE in the Fresnel domain needs to be kept, while other information like amplitude values can be eliminated. Then, with the correct phase keys (we do not consider wavelength and distance as keys here) and a nonlinear correlation algorithm, the encrypted image can be authenticated. Experimental results demonstrate that the encrypted images can be successfully authenticated with this partial phase plus nonlinear correlation technique.

Single Image Dehazing Using Dark Channel Prior and Minimal Atmospheric Veil

  • Zhou, Xiao;Wang, Chengyou;Wang, Liping;Wang, Nan;Fu, Qiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.341-363
    • /
    • 2016
  • Haze or fog is a common natural phenomenon. In foggy weather, the captured pictures are difficult to be applied to computer vision system, such as road traffic detection, target tracking, etc. Therefore, the image dehazing technique has become a hotspot in the field of image processing. This paper presents an overview of the existing achievements on the image dehazing technique. The intent of this paper is not to review all the relevant works that have appeared in the literature, but rather to focus on two main works, that is, image dehazing scheme based on atmospheric veil and image dehazing scheme based on dark channel prior. After the overview and a comparative study, we propose an improved image dehazing method, which is based on two image dehazing schemes mentioned above. Our image dehazing method can obtain the fog-free images by proposing a more desirable atmospheric veil and estimating atmospheric light more accurately. In addition, we adjust the transmission of the sky regions and conduct tone mapping for the obtained images. Compared with other state of the art algorithms, experiment results show that images recovered by our algorithm are clearer and more natural, especially at distant scene and places where scene depth jumps abruptly.

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.

Improved Bag of Visual Words Image Classification Using the Process of Feature, Color and Texture Information (특징, 색상 및 텍스처 정보의 가공을 이용한 Bag of Visual Words 이미지 자동 분류)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.79-82
    • /
    • 2015
  • Bag of visual words(BoVW) is one of the image classification and retrieval methods, using feature point that automatical sorting and searching system by image feature vector of data base. The existing method using feature point shall search or classify the image that user unwanted. To solve this weakness, when comprise the words, include not only feature point but color information that express overall mood of image or texture information that express repeated pattern. It makes various searching possible. At the test, you could see the result compared between classified image using the words that have only feature point and another image that added color and texture information. New method leads to accuracy of 80~90%.

  • PDF

Detection for Operation Chain: Histogram Equalization and Dither-like Operation

  • Chen, Zhipeng;Zhao, Yao;Ni, Rongrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3751-3770
    • /
    • 2015
  • Many sorts of image processing software facilitate image editing and also generate a great number of doctored images. Forensic technology emerges to detect the unintentional or malicious image operations. Most of forensic methods focus on the detection of single operations. However, a series of operations may be used to sequentially manipulate an image, which makes the operation detection problem complex. Forensic investigators always want to know as much exhaustive information about a suspicious image's entire processing history as possible. The detection of the operation chain, consisting of a series of operations, is a significant and challenging problem in the research field of forensics. In this paper, based on the histogram distribution uniformity of a manipulated image, we propose an operation chain detection scheme to identify histogram equalization (HE) followed by the dither-like operation (DLO). Two histogram features and a local spatial feature are utilized to further determine which DLO may have been applied. Both theoretical analysis and experimental results verify the effectiveness of our proposed scheme for both global and local scenarios.

Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering

  • Sun, Jing;Cai, Xibiao;Sun, Fuming;Hong, Richang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2607-2627
    • /
    • 2017
  • Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.

Soft-$\alpha$ Filter Technology for image enhancement of MPEG-2 Video (MPEG-2 비디오의 화질 향상을 위한 소프트-$\alpha$ 필터 기법)

  • 심비연;박영배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.109-111
    • /
    • 2002
  • Visual organs play an important role in human information recognition processes. If they are expressed in a way of digital information, it makes much bigger amount of visual information among any other information. For that reason, MPEG-2 has been taken use of to represent information compressing technology in multi-media. Although the imported data would basically contain noises, when original video images are encoded into MPET-2. Accordingly, we propose soft- $\alpha$ filter to improve image quality of digital image received from the actual image and to reduce noises from them. We also propose a method combining vertical/horizontal filter and soft- $\alpha$ filter on MPEG-2 video image. We can get two kinds of effects from the advantages of this kind of combination. Firstly, it will reduce processing time ducting horizontal and vetical filtering process. It will cover time for soft- $\alpha$ filter. Secondly, it will simplify the colors in horizontal and vertical filter. Therefore we can get clearer quality without noises from soft- $\alpha$ filter.

  • PDF

ENHANCEMENT OF FACE DETECTION USING SPATIAL CONTEXT INFORMATION

  • Min, Hyun-Seok;Lee, Young-Bok;Lee, Si-Hyoung;Ro, Yong-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.108-113
    • /
    • 2009
  • Significant attention has recently been drawn to digital home photo albums that use face detection technology. The tendency can be found in home photo albums that people prefer to allocate concerned objects in the center of the image rather than the boundary when they take a picture. To improve detection performance and speed that are important factors of face detection task, this paper proposes a face detection method that takes spatial context information into consideration. Experiments were performed to verify the usefulness of the proposed method and results indicate that the proposed face detection method can efficiently reduce the false positive rate as well as the runtime of face detection.

  • PDF