• Title/Summary/Keyword: image division

Search Result 2,363, Processing Time 0.034 seconds

Alchemical Transformation Process revealed in Sand Play (모래놀이에 나타난 연금술적 변환과정)

  • Dukkyu Kim
    • Sim-seong Yeon-gu
    • /
    • v.39 no.1
    • /
    • pp.61-91
    • /
    • 2024
  • Alchemy is the process of producing worthless substances into the best substances through chemical opus(work). On the surface, many of the alchemist's experiments can be depicted as work on transforming substances, but in reality, the alchemist's result is a product of the Unconscious. This study aims to explain the three phases of alchemy, Nigredo, Albedo, and Rubedo, through Michael Mayer's alchemical text, Atalanta Fugiens, and understand the transformation process by utilizing images that appeared from clients' sand play therapy. This study first described why alchemy, as the foundation for the psychology of the Unconscious, is important in sand play that deals with images. Next, Nigredo (blackening), the first phase of the alchemical process, is briefly described, and how the contents of Nigredo, such as chaos, dissolution, separation, division, corruption, death, and calcination, appear in sand play therapy. Next, the second phase, albedo (whitening), is described, and how the images of water and fire, which are representative images of albedo in the form of purification, sublimation, distillation, separation, descension, and coagulation, are revealed in sand play. Lastly, the phase of rubedo (reddening) in alchemy is described, and how the form of union (mandala or central image) in rubedo, which appears in the form of conjunction and rebirth, is revealed in sand play. The symbols revealed in alchemy are very valuable in amplifying the images that appeared in sand play therapy or dream analysis. In particular, the procedures found in alchemical opus are helpful in understanding the transformation process of personality.

A Study on Fast Iris Detection for Iris Recognition in Mobile Phone (휴대폰에서의 홍채인식을 위한 고속 홍채검출에 관한 연구)

  • Park Hyun-Ae;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.19-29
    • /
    • 2006
  • As the security of personal information is becoming more important in mobile phones, we are starting to apply iris recognition technology to these devices. In conventional iris recognition, magnified iris images are required. For that, it has been necessary to use large magnified zoom & focus lens camera to capture images, but due to the requirement about low size and cost of mobile phones, the zoom & focus lens are difficult to be used. However, with rapid developments and multimedia convergence trends in mobile phones, more and more companies have built mega-pixel cameras into their mobile phones. These devices make it possible to capture a magnified iris image without zoom & focus lens. Although facial images are captured far away from the user using a mega-pixel camera, the captured iris region possesses sufficient pixel information for iris recognition. However, in this case, the eye region should be detected for accurate iris recognition in facial images. So, we propose a new fast iris detection method, which is appropriate for mobile phones based on corneal specular reflection. To detect specular reflection robustly, we propose the theoretical background of estimating the size and brightness of specular reflection based on eye, camera and illuminator models. In addition, we use the successive On/Off scheme of the illuminator to detect the optical/motion blurring and sunlight effect on input image. Experimental results show that total processing time(detecting iris region) is on average 65ms on a Samsung SCH-S2300 (with 150MHz ARM 9 CPU) mobile phone. The rate of correct iris detection is 99% (about indoor images) and 98.5% (about outdoor images).

Investigation of the Signal Characteristics of a Small Gamma Camera System Using NaI(Tl)-Position Sensitive Photomultiplier Tube (NaI(Tl) 섬광결정과 위치민감형 광전자증배관을 이용한 소형 감마카메라의 신호 특성 고찰)

  • Choi, Yong;Kim, Jong-Ho;Kim, Joon-Young;Im, Ki-Chun;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Joo, Koan-Sik;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.82-93
    • /
    • 2000
  • Purpose: We characterized the signals obtained from the components of a small gamma camera using Nal(Tl)-position sensitive photomultiplier tube (PSPMT) and optimized the parameters employed in the modules of the system. Materials and Methods: The small gamma camera system consists of a Nal(Tl) crystal ($60{\times}60{\times}6mm^3$) coupled with a Hamamatsu R3941 PSPMT, a resister chain circuit, preamplifiers, nuclear instrument modules (NIMs), an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a resistive charge division circuit which multiplexes the 34 cross wire anode channels into 4 signals (X+, X-, Y+, Y -). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated and digitized via triggering signal and used to localize the position of an event by applying the Anger logic. The gamma camera control and image display was performed by a program implemented using a graphic software. Results: The characteristics of signal and the parameters employed in each module of the system were presented. The intrinsic sensitivity of the system was approximately $8{\times}10^3$ counts/sec/${\mu}Ci$. The intrinsic energy resolution of the system was 18% FWHM at 140 keV. The spatial resolution obtained using a line-slit mask and $^{99m}Tc$ point source were, respectively, 2.2 and 2.3 mm FWHM in X and Y directions. Breast phantom containing $2{\sim}7mm$ diameter spheres was successfully imaged with a parallel hole collimator. The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We proposed a simple method for development of a small gamma camera and presented the characteristics of the signals from the system and the optimized parameters used in the modules of the small gamma camera.

  • PDF

The Study on Chinese Comics Characteristics (중국 만화 <삼모 유랑기> 의 특성 연구)

  • Jin, Li-Na;Kim, Mi-Rim
    • Cartoon and Animation Studies
    • /
    • s.48
    • /
    • pp.333-358
    • /
    • 2017
  • Mainland China is under different conditions both socially and politically than other countries, so there is a lack of practical researches on cartoon characters. With a profound interest, the researcher has selected a character that is realistic and loved by many Chinese. The subject of the study is "Shan Mao Series." Out of 16 seasons, the most famous one is the Chronicle of Shan Mao's Wander. I analyzed the character thoroughly, dealing with the beginning of the character, the process of character development, and a reality shown in the chronicle, etc. on chapter II, and the character's image component on chapter III. Chinese modern cartoons were affected by a situational anxiety because of foreign powers and war. Thus satire cartoons went in fads among the public. The epitome of a typical cartoon was the Shan Mao Series. From 1935, when the character was first created, to now it has eaten into Chinese people's hearts. It's because the story happens during a war period and it deals with a playful, humorous main character's life and these facts show the hidden side of the unfair social system. Most of readers prefer a smart, playful, righteous, and brave character. Shan means three and mao, hair in Chinese, so Shan Mao is a child who has three hair. The character is not just a simple cartoon character; it has developed into a national figure among many Chinese. The reason why the researcher has chosen the series created by Zhang Leping, the author of the cartoon, is because a good cartoon, good animation, and even good movie stimulate the feelings that we get from our surroundings. The character which is created in China seems very unique and bizarre but there is a sense of friendliness. Also its character image and scenes make people laugh and it has become a typical symbol of a modern cartoon in China.

Development of a Small Gamma Camera Using NaI(T1)-Position Sensitive Photomultiplier Tube for Breast Imaging (NaI (T1) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, Jong-Ho;Choi, Yong;Kwon, Hong-Seong;Kim, Hee-Joung;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Moon-Hae;Joo, Koan-Sik;Kim, Byuug-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 1998
  • Purpose: The conventional gamma camera is not ideal for scintimammography because of its large detector size (${\sim}500mm$ in width) causing high cost and low image quality. We are developing a small gamma camera dedicated for breast imaging. Materials and Methods: The small gamma camera system consists of a NaI (T1) crystal ($60 mm{\times}60 mm{\times}6 mm$) coupled with a Hamamatsu R3941 Position Sensitive Photomultiplier Tube (PSPMT), a resister chain circuit, preamplifiers, nuclear instrument modules, an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a standard resistive charge division which multiplexes the 34 cross wire anode channels into 4 signals ($X^+,\;X^-,\;Y^+,\;Y^-$). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated ana digitized via triggering signal and used to localize the position of an event by applying the Anger logic. Results: The intrinsic sensitivity of the system was approximately 8,000 counts/sec/${\mu}Ci$. High quality flood and hole mask images were obtained. Breast phantom containing $2{\sim}7 mm$ diameter spheres was successfully imaged with a parallel hole collimator The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We have succesfully developed a small gamma camera using NaI(T1)-PSPMT and nuclear Instrument modules. The small gamma camera developed in this study might improve the diagnostic accuracy of scintimammography by optimally imaging the breast.

  • PDF

Tuberculin Survey to Estimate the Prevalence of Tuberculosis Infection of the Elementary Schoolchildren under High BCG Vaccination Coverage (고 비시지 접종률 상태에서 초등학생들의 투베르쿨린 조사를 통한 감염률 추정 조사)

  • Kim, Hee Jin;Oh, Soo Yeon;Lee, Jin Bum;Park, Yun Sung;Lew, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.4
    • /
    • pp.269-276
    • /
    • 2008
  • Background: Although the prevalence of tuberculosis infections (PTBI) is one of the basic epidemiologic indices, no survey has been carried out since 1995 because the nation-wide tuberculosis prevalence survey was changed to a surveillance system. Subjects without a BCG scar are examined in a tuberculin survey. However, it is very difficult to select these subjects under high vaccination coverage. It is important to evaluate the impact of BCG vaccinations on the tuberculin response and estimate the PTBI regardless of the BCG vaccination status. Methods: A nation-wide, school-based cross-sectional tuberculin survey was carried out among first graders in elementary school in 2006. A total of 5,148 children in 40 schools were selected by quota sampling. Tuberculin testing with 0.1 ml of two tuberculin units of PPD RT23 was carried out on 4,018 children. The maximum transverse diameter of induration was measured 48 to 72 hours later. The presence of a BCG scar was checked separately. Results: There were no BCG scars in 6.3% of the subjects. The mean induration size of tuberculin testing was $3.7{\pm}4.4mm$, which included 1,882 (46.8%) subjects with an induration size of 0 mm. The PTBI was 10.9% (439 subjects) using a cut-off point of ${\geq}10mm$ (conventional method). The annual risk of tuberculosis infections (ARTI) was 1.9% when the mean age of the subjects was assumed to be 6 years. There was no difference in the PTBI according to the presence or absence of a BCG scar [11.2% vs 7.6% (OR: 1.54, 95% CI: 0.98~2.43)]. Using a mirror image technique with 16 mm as the cut-off point, the PTBI and ARTI had decreased to 2.4% and 0.4% respectively. Conclusion: PTBI and ARTI, as estimated by conventional methods, appear to be high among BCG vaccinated children. A mirror image technique is more suitable for estimating the indices in a country with an intermediate burden of tuberculosis than the conventional method.

Causes of the Difference of Inhabited Altitudes above Sea Level of Fairy Pitta(Pitta nympha) on Jeju Island Followed by Forest Landscape Through the Comparison of Landsat Images and the Literature Review (Landsat 영상비교와 문헌연구를 통한 제주도 산림경관변화와 팔색조 서식고도 차이에 관한 연구)

  • Kim, Eun-Mi;Kwon, Jin-O;Kang, Chang-Wan;Chun, Jung-Hwa
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.79-90
    • /
    • 2013
  • The altitude range of habitats in which Fairy Pitta inhabited in 1960s is different from the present in Jeju Island. We studied on the habitat environment to understand the causes of difference through the comparison of satellite image data(Landsat) between 1975 and 2002, the literature review in relation to habitats, vegetations, and forest landscapes. The area of below 600m asl.(above sea level) where is mainly Fairy Pitta inhabited at the present with a lot of forests, was massive pasture with small isolated forests nearby valley. The forests were broad-leaved evergreen forests, and second forests with poor condition in the size and forest structure. The forests around 700m asl. were also second forests with approximately 3m height trees. The forests from 800m to 1300m asl. were also disturbed by mushroom cultivation by local people. The authors believe that Fairy Pitta could not inhabited in the area above 1300m because of the poor forest conditions in the size and structure in which consist of Ilex crenata, Rhododendron mucronulatum var. ciliatum and coppice forests. Therefore it might be possible that the best forests for the Fairy Pitta habitat were located in the area of 1,000m to 1,300m above sea level in 1960s. Compared to present habitats, forests at 100m up to 800m above sea level, the authors believe that the size of habitats were smaller with less population of Fairy Pitta. Since 1960s the forest landscape of Jeju Island has been improved successfully, and because of that the population of Fairy Pitta also has been increased. To protect the Fairy Pitta and habitats in Jeju Island, it is suggested that sustainable forest management focusing on the species composition and stand structure maintain or enhance the biodiversity.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Strategy of Multistage Gamma Knife Radiosurgery for Large Lesions (큰 병변에 대한 다단계 감마나이프 방사선수술의 전략)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.801-809
    • /
    • 2019
  • Existing Gamma Knife Radiosurgery(GKRS) for large lesions is often conducted in stages with volume or dose partitions. Often in case of volume division the target used to be divided into sub-volumes which are irradiated under the determined prescription dose in multi-sessions separated by a day or two, 3~6 months. For the entire course of treatment, treatment informations of the previous stages needs to be reflected to subsequent sessions on the newly mounted stereotactic frame through coordinate transformation between sessions. However, it is practically difficult to implement the previous dose distributions with existing Gamma Knife system except in the same stereotactic space. The treatment area is expanding because it is possible to perform the multistage treatment using the latest Gamma Knife Platform(GKP). The purpose of this study is to introduce the image-coregistration based on the stereotactic spaces and the strategy of multistage GKRS such as the determination of prescription dose at each stage using new GKP. Usually in image-coregistration either surgically-embedded fiducials or internal anatomical landmarks are used to determine the transformation relationship. Author compared the accuracy of coordinate transformation between multi-sessions using four or six anatomical landmarks as an example using internal anatomical landmarks. Transformation matrix between two stereotactic spaces was determined using PseudoInverse or Singular Value Decomposition to minimize the discrepancy between measured and calculated coordinates. To evaluate the transformation accuracy, the difference between measured and transformed coordinates, i.e., ${\Delta}r$, was calculated using 10 landmarks. Four or six points among 10 landmarks were used to determine the coordinate transformation, and the rest were used to evaluate the approaching method. Each of the values of ${\Delta}r$ in two approaching methods ranged from 0.6 mm to 2.4 mm, from 0.17 mm to 0.57 mm. In addition, a method of determining the prescription dose to give the same effect as the treatment of the total lesion once in case of lesion splitting was suggested. The strategy of multistage treatment in the same stereotactic space is to design the treatment for the whole lesion first, and the whole treatment design shots are divided into shots of each stage treatment to construct shots of each stage and determine the appropriate prescription dose at each stage. In conclusion, author confirmed the accuracy of prescribing dose determination as a multistage treatment strategy and found that using as many internal landmarks as possible than using small landmarks to determine coordinate transformation between multi-sessions yielded better results. In the future, the proposed multistage treatment strategy will be a great contributor to the frameless fractionated treatment of several Gamma Knife Centers.

Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System (무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지)

  • Min-Jun, Park;Chan-Seok, Ryu;Ye-Seong, Kang;Hye-Young, Song;Hyun-Chan, Baek;Ki-Su, Park;Eun-Ri, Kim;Jin-Ki, Park;Si-Hyeong, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2022
  • The purpose of this study is to detect the sorghum panicle using YOLOv5 based on RGB images acquired by a unmanned aerial vehicle (UAV) system. The high-resolution images acquired using the RGB camera mounted in the UAV on September 2, 2022 were split into 512×512 size for YOLOv5 analysis. Sorghum panicles were labeled as bounding boxes in the split image. 2,000images of 512×512 size were divided at a ratio of 6:2:2 and used to train, validate, and test the YOLOv5 model, respectively. When learning with YOLOv5s, which has the fewest parameters among YOLOv5 models, sorghum panicles were detected with mAP@50=0.845. In YOLOv5m with more parameters, sorghum panicles could be detected with mAP@50=0.844. Although the performance of the two models is similar, YOLOv5s ( 4 hours 35 minutes) has a faster training time than YOLOv5m (5 hours 15 minutes). Therefore, in terms of time cost, developing the YOLOv5s model was considered more efficient for detecting sorghum panicles. As an important step in predicting sorghum yield, a technique for detecting sorghum panicles using high-resolution RGB images and the YOLOv5 model was presented.